Математика Дата саентиста
14.2K subscribers
476 photos
178 videos
41 files
419 links
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Mo Gawdat: ИИ больше не просто пишет код, он исправляет нашу математику

Бывший топ-менеджер Google X Мо Гавдат рассказал:
ИИ перестал быть «инструментом программиста». Он начал исправлять человеческие математические методы.

📁 56 лет мы использовали одну и ту же формулу для умножения матриц.
ИИ обнаружил, что подход был неэффективным — и придумал новую математику, а не просто оптимизировал софт.

Результат:

- +23% к производительности
- минус сотни миллионов долларов затрат
- огромная экономия энергии

Это не просто ускорение алгоритмов —
это момент, когда ИИ начинает изобретать фундаментальные вещи, на которых стоит весь софт.

И будущее становится ещё интереснее.
👏22💩176👍4👎3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Математик Теренс Тао - один из самых цитируемых учёных в мире о LLM:

Обучать и запускать большие языковые модели не так уж математически сложно: базу вполне может понять обычный студент-математик.

Но настоящая загадка в другом - у нас нет теории, которая объясняет,
почему модели блестяще решают одни задачи и внезапно проваливаются на других.

По словам Тао, сегодня мы можем только пробовать, измерять и сравнивать результаты —
«мы можем делать лишь эмпирические эксперименты».


Это редкое честное признание: ИИ пока работает как инженерия без полноценной науки — сначала строим, потом понимаем.
17👍13🔥12
⚡️ Wavelet Matrix - структура данных, которая делает сложные запросы быстрыми

Wavelet Matrix позволяет хранить последовательности так,
чтобы работать с ними молниеносно и компактно.

🔥 Что умеет библиотека:

- rank - сколько раз элемент встречается до позиции
- select - где находится k-е вхождение элемента
- quantile - k-й по величине элемент на отрезке
- top-k - самые частые элементы на диапазоне

И всё это — за логарифмическое время и с экономией памяти.

Чем полезен

- работает быстрее, чем наивные структуры
- меньше памяти, чем обычные массивы
- подходит для поиска, индексирования, сжатия, аналитики

Wavelet Matrix - это пример того,
как «умные» структуры данных дают реальные ускорения,
а не просто красивая теория.

Если интересуешься алгоритмами -
этот репозиторий точно стоит сохранить.

Репозиторий: https://github.com/math-hiyoko/wavelet-matrix

@pythonl
👍87🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Джеффри Хинтон: ИИ может обогнать людей в математике

Хинтон считает, что математика - это «закрытая система», а значит ИИ может работать с ней как с игрой с понятными правилами.

Модели уже умеют:

• ставить себе задачи
• проверять собственные доказательства
• учиться на своих же ошибках — без примеров от людей

«Я думаю, что ИИ станет гораздо лучше людей в математике - возможно, уже в ближайшие 10 лет».


💡 Если это случится, ИИ сможет не просто решать задачи, а открывать новые теоремы и методы, двигая науку еще быстрее, чем раньше.
👍117🤡6🔥5
DeepSeek снова в игре 🔥

"Conditional Memory via Scalable Lookup: A New Axis of Sparsity for Large Language Models"

Идея мощная: DeepSeek предлагают Engram - модуль памяти, который добавляет к LLM *lookup-память* с доступом за O(1).

Что это значит по-человечески:
вместо того чтобы каждый раз “вспоминать” шаблоны через слои трансформера, модель может моментально доставать нужные куски знаний из отдельной памяти.

Engram - это:
- хешированная N-gram память (modernized hashed N-gram embeddings)
- которая работает как быстрый словарь: *пришёл паттерн → достали представление → усилили модель*

Анализ показывает интересное:

🧠 Engram снижает необходимость ранним слоям заново реконструировать “статичные паттерны”
(частые формы, устойчивые токены, регулярные последовательности)

➡️ То есть ранние слои (слои трансформера, которые стоят ближе всего ко входу.) меньше заняты “механической работой”и больше ресурсов остаётся на главное.

В результате модель становится как будто глубже там, где надо:
- reasoning
- планирование
- длинные цепочки мыслей

Фактически это новый тип sparsity:
не только MoE/спарсные слои,
а спарсная память с быстрым доступом.


Это уже похоже на шаг к LLM, где часть знаний живёт как “кэш-память”, а не внутри весов.

Paper: https://github.com/deepseek-ai/Engram/blob/main/Engram_paper.pdf
Видео: https://www.youtube.com/watch?v=Hoz9HxHy_nQ
👍124🔥2
🧠 Grok 4.20: ИИ нашёл новую Bellman-функцию и продвинул сложную задачу в анализе

По сообщениям, Grok 4.20 смог идентифицировать новую Bellman function, которая помогает продвинуться в одной из “тяжёлых” тем математики - на стыке:

- гармонического анализа
- стохастических процессов
- и поведения случайных средних

Самое интересное - ИИ не просто “угадал ответ”, а предложил явную формулу, основанную на времени выхода броуновского движения (exit time of Brownian motion).

Результат:
- удалось улучшить известную нижнюю оценку
- и приблизить математическое сообщество к более точному пониманию того,
как ведут себя средние значения в стохастических системах

Мы входим в эпоху, где ИИ ускоряет математику не на проценты - а на порядки. ⚡️

https://x.com/PI010101/status/2011560477688463573
13👍7🔥5👎1
🧠 Почти 40 лет прошло… и мы снова спорим о том же. Только теперь - про ИИ.

В 1986 году учителя математики протестовали против калькуляторов.
Боялись, что дети перестанут учить базу и будут просто “жать кнопки”.

И на тот момент это была вполне реальная проблема.

Перематываем в 2026 - и мы видим тот же спор, только уже про AI.

Но есть важная разница:

Калькулятор - просто даёт ответ.

А ИИ способен сделать весь процесс:
- придумать решение
- объяснить шаги
- написать код
- оформить вывод
- предложить варианты

И вот это уже не “удобный инструмент”.
Это смена самой модели обучения и работы.

Калькулятор ускорял вычисления.
ИИ ускоряет мышление и действия.

И именно поэтому спор вокруг него будет намного жестче.
15👍7🔥5🤮2
🧊 pyPFC - Python-библиотека для Phase Field Crystal (PFC) симуляций

Если ты занимаешься моделированием материалов, кристаллов или фазовых переходов - сохрани.
pyPFC позволяет запускать PFC-симуляции быстро и удобно прямо на Python.

Что такое Phase Field Crystal (PFC)?
PFC (Phase Field Crystal) - это метод моделирования, который описывает материал как непрерывное поле плотности.

Проще:
- вместо того чтобы симулировать каждый атом отдельно (как в molecular dynamics)
- PFC моделирует “узор кристаллической решётки” как волну/поле

За счёт этого PFC может моделировать процессы на более длинных временных масштабах, чем классические атомарные симуляции.

PFC используют, чтобы изучать:
- рост кристаллов и формирование структуры
- дефекты решётки (дислокации)
- зернистость и границы зёрен
- фазовые переходы и самоорганизацию
- поведение материалов при охлаждении/нагреве

Что даёт pyPFC:
ускорение на GPU через PyTorch (можно гонять и на CPU, и на RTX)
🧪 готовые 3D-симуляции, примеры, эксперименты
🧩 удобно для исследований и обучения
📦 open-source проект + нормальная инженерная структура

GitHub:
https://github.com/HHallb/pyPFC
👍4🔥4
⚡️Пошаговый план: как получить оффер на аналитика в 2026 году?

Приглашаем на бесплатный вебинар, где Андрон Алексанян - эксперт в области аналитики и CEO школы аналитики Simulative — в прямом эфире разберет все важные аспекты в работе аналитика, а также расскажет как получить оффер быстрее других.

Это очень полезное событие для тех кто только зашел в аналитику и для тех, кто хочет в нее зайти в ближайшее время. Особенно если вы не понимаете, какие навыки действительно важны или боитесь, что без опыта вас не возьмут на работу. Кстати тут разберут и возрастной аспект: как стать аналитиком в 30/40/50 лет и т.д.

На вебинаре будет:
🟠Разберем полный роадмап: что учить, в каком порядке, до какого уровня;
🟠Структура хорошего портфолио с примерами;
🟠Что говорят реальные наниматели - какие у них сейчас требования:
— Покажем реальные примеры, как оформить резюме и портфолио, чтобы привлекать внимание;
— Обсудим какие отклики работают, а какие сразу отправляют в корзину;
— Изнанка найма: инсайдерский взгляд на процессы отбора

🟠 Практические техники для новичков: разберём, как компенсировать недостаток опыта и быстро закрывать пробелы в знаниях.

💬 Всем зарегистрировавшимся Simulative пришлют полезный материал — карту компетенций аналитика данных со всеми нужными инструментами для освоения.

😶Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
2
💼 5 AI-репозиториев, которые реально помогут устроиться на работу в 2026

Сохрани себе - это готовые идеи, которые можно собрать в портфолио и показать на собесе.

1) RAG с нуля (RAG from Scratch)
Поймёшь, как устроены retrieval, embeddings, чанкинг, ранжирование и ответы LLM.
GitHub: https://github.com/langchain-ai/rag-from-scratch

2) AI-агент для соцсетей (Social Media Agent)
Автоматизация контента: генерация постов, планирование, работа с трендами.
GitHub: https://github.com/langchain-ai/social-media-agent

3) Анализ медицинских изображений (Medical Image Analysis)
Компьютерное зрение + реальные кейсы: классификация, сегментация, пайплайны.
GitHub: https://github.com/databricks-industry-solutions/pixels

4) MCP Tool-Calling агенты
Агенты, которые умеют вызывать инструменты и внешние сервисы (LangGraph + MCP).
Notebook: https://docs.databricks.com/aws/en/notebooks/source/generative-ai/langgraph-mcp-tool-calling-agent.html

5) AI-ассистент с памятью (Assistant with Memory)
Персонализация: хранение контекста, long-term memory, улучшение диалогов со временем.
GitHub: https://github.com/Makememo/MemoAI

Если хочешь войти в AI - собирай не “игрушки”, а проекты, которые показывают реальные навыки.
9👍5👎2🔥1
Карьера — это путь, на котором иногда хочется остановиться и сверить курс. Вы осваиваете новые навыки и решаете задачи, но превращается ли это в системный рост или просто в движение по инерции?

Вместо неопределенности хочется ясности: четкого понимания, какие навыки действительно важны, в каком направлении движется карьера и куда стоит направить усилия для уверенного развития.

На вебинаре «Аналитик данных: все, что нужно знать для старта в профессии в 2026» Анатолий Карпов поможет навести порядок в этом хаосе: объяснит, как сегодня устроена аналитика, какие навыки дают реальную ценность и как выстроить развитие так, чтобы чувствовать опору и уверенность в своих шагах.

Анатолий Карпов — ez-аналитик Mailꓸru Group и VK, самый читаемый эксперт в аналитике, по исследованию NEWHR.

Зарегистрируйтесь на вебинар и получите ясность в своем развитии — https://clc.to/erid_2W5zFH7HdvG

Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627. erid: 2W5zFH7HdvG
4👍2
Postgres: best practices для AI-агентов (и почему это важно)

Supabase выпустили Postgres Best Practices - набор правил/“скиллов” для AI coding agents (Claude Code, Cursor, Copilot и т.д.), чтобы они писали не просто рабочий SQL, а нормальный продовый Postgres.

Потому что классическая проблема такая:
агент сгенерит “правильный” запрос, тесты пройдут,
а через 2 недели это превратится в:
- медленные JOIN’ы
- seq scan на миллионы строк
- взрыв коннектов
- блокировки
- RLS, которая внезапно тормозит всё

Что внутри “Postgres Best Practices”
Это структурированный набор правил по 8 темам (от самых критичных к менее критичным):

- Query Performance (Critical) - как писать запросы, чтобы не убивать базу
- Connection Management (Critical) - пулы, лимиты, правильная работа с коннектами
- Schema Design (High) - индексы, типы, ключи, нормальные схемы
- Concurrency & Locking (Medium-High) - как не словить дедлоки и долгие locks
- Security & RLS (Medium-High) - RLS без боли и сюрпризов
- Data Access Patterns (Medium) - как правильно читать/писать данные в приложении
- Monitoring & Diagnostics (Low-Medium) - что мониторить и как дебажить
- Advanced Features (Low) - продвинутые приёмы

Самое полезное:
это не “статья”, а готовый набор инструкций, который агент может автоматически применять, когда он:
- пишет SQL
- проектирует схему
- предлагает индексы
- оптимизирует запросы
- настраивает RLS / connection pooling

То есть агент начинает думать ближе к DBA, а не как генератор SQL.

https://supabase.com/blog/postgres-best-practices-for-ai-agents
🔥76👍3
🧠 UnsolvedMath - 1000+ открытых математических задач как бенчмарк для ИИ

Появился мощный ресурс для оценки настоящего reasoning, а не заученных паттернов.

Выложен датасет UnsolvedMath — это:
- 1000+ открытых математических проблем
- 600+ задач из списка Эрдёша
- аккуратно структурировано в machine-friendly формате

Главная идея — создать бенчмарк, который нельзя “выучить” на этапе тренировки.
Если модель показывает прогресс здесь — это уже не воспроизведение данных, а реальное рассуждение.

Почему это важно

Обычные тесты:
- часто содержат задачи, похожие на обучающие данные
- проверяют знание, а не исследовательское мышление

UnsolvedMath:
- требует построения новых гипотез
- проверяет глубину логики
- показывает, способна ли модель делать научно полезные инсайты

Любые новые идеи или нетривиальные наблюдения по этим задачам — уже метрика силы reasoning-модели.

Сейчас, по заявлениям авторов, лидирует GPT-5.2 с Extended Thinking, с заметным отрывом.
Обещают тесты и подробный whitepaper.

Это шаг к тому, чтобы оценивать ИИ не по “угадай ответ”, а по способности двигать границы знаний.

https://huggingface.co/datasets/ulamai/UnsolvedMath
❤‍🔥107🔥6
🖥 Парсинг на Python - от DOM до асинхронщины. Стань Гуру Парсинга.

Один из лучших курсов по Парсинг на Stepik со скидкой 48%

Освой Python-парсинг так, как это делают в реальных проектах.
Не учебные “игрушки”, а рабочие инструменты для сбора данных с сайтов, API и динамических сервисов.

На курсе ты шаг за шагом пройдешь путь от нуля до уровня, где умеешь стабильно забирать данные, работать с защитами, динамикой и автоматизацией. Без воды - только то, что используют в продакшене.

В итоге ты сможешь не просто “писать на Python”, а решать практические задачи: анализ данных, мониторинг, автоматизация, фриланс-заказы и собственные проекты.

Сегодня можно забрать курс со скидкой 48%: https://stepik.org/a/269942/
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥32
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Автоматическое создание бэкапов каталога в Python

Сохрани себе простой скрипт на Python для автоматического создания бэкапа каталога. Это удобно, если нужно сохранить важные файлы перед их изменением. Скрипт использует библиотеку shutil для копирования содержимого в другую папку с отметкой времени.


import os
import shutil
from datetime import datetime
def backup_directory(source_dir, backup_base_dir):
if not os.path.exists(source_dir):
print("Исходный каталог не существует.")
return
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_dir = os.path.join(backup_base_dir, f"backup_{timestamp}")
shutil.copytree(source_dir, backup_dir)
print(f"Резервная копия создана в {backup_dir}")
source = "путь/к/вашему/каталогу"
backup_base = "путь/к/каталогу/бэкапов"
backup_directory(source, backup_base)


https://www.youtube.com/shorts/lYVBn8R0UnQ
👍5🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Теренс Тао говорит, что эпоха ИИ показывает одну неудобную вещь:

наше определение интеллекта было неверным.

Мы думали, что интеллект - это что-то туманное, почти мистическое. Интуиция. Осознанность. Глубокое понимание.

А потом приходит ИИ…
и начинает решать задачи, которые считались признаком “настоящего мышления”.

Но когда смотришь внутрь, там нет озарений, нет “понимания”.
Только:

• статистика
• нейросети
• предсказание следующего токена
• эвристики
• оптимизация
И всё.

Никакой магии. Никакого "внутреннего света разума".

И тут возникает неудобная мысль:

А вдруг это и есть большая часть того, что делаем мы?

Может, человеческое мышление - это тоже
огромный стек трюков, паттернов и предсказаний,
просто реализованный на биологическом железе.

ИИ не обесценивает интеллект. Он разбирает его на детали.

И оказывается, что “разум” может быть не чем-то мистическим,
а инженерной конструкцией.

И это, возможно, самое тревожное открытие всей AI-эры.
27💯11👍7👎6🤨5🔥4😱2
🚀 PolymathicAI выпустила огромный открытый датасет для ML-исследований -*The Well*

📦 Это коллекция численных физических симуляций общего назначения — всего ~15 ТБ данных, разбитых на 16 разнообразных наборов, включающих такие области, как:
• динамика жидкостей и турбулентность
• биологические системы
• акустическое рассеяние
• магнито-гидродинамика и моделирование внегалактических сред
• даже симуляции сверхновых 🌌
И всё это можно использовать для обучения и оценки моделей ML.
📊 Зачем это нужно:
ИИ и ML всё чаще используются для ускорения или замены тяжёлых физических симуляций (surrogate modeling), но до сих пор публичные данные были фрагментированы и маленькие. “The Well” даёт единый формат, большой объём и сложные динамические процессы - отличная база для:
• обучения нейросетей, которые предсказывают физическое поведение
• бенчмарков и сравнительных исследований
• создания более быстрых моделей вместо тяжёлых классических симуляторов

📚 Как использовать:
Проект предоставляет Python/PyTorch API - можно легко загрузить данные в даталоадер и использовать их в тренировке моделей. Данные доступны также через Hugging Face и в формате HDF5 для удобства.

💡 Это открытый ресурс с BSD-3-Clause лицензией, ориентированный на высокоуровневые ML-задачи и научные исследования.

Это может стать новым стандартным набором для обучения моделей, которые симулируют сложные физические системы вместо традиционных вычислительных методов.

🔗 Репозиторий на GitHub: github.com/PolymathicAI/the_well
9👍6🔥5