Анализ данных (Data analysis)
46.9K subscribers
2.75K photos
311 videos
1 file
2.34K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
⚡️ Matrix Exponential Attention (MEA) - экспериментальный механизм внимания для трансформеров

MEA предлагает альтернативу классическому softmax-attention. Вместо нормализации через softmax используется матричная экспонента, что позволяет моделировать более сложные, высоко-порядковые взаимодействия между токенами.

Ключевая идея
Внимание формулируется как exp(QKᵀ), а вычисление экспоненты аппроксимируется через усечённый ряд. Это даёт возможность считать внимание линейно по длине последовательности, не создавая огромные n×n матрицы.

Что это даёт
- Более выразительное внимание по сравнению с softmax
- Higher-order взаимодействия между токенами
- Линейная сложность по памяти и времени
- Подходит для длинных контекстов и исследовательских архитектур

Проект находится на стыке Linear Attention и Higher-order Attention и носит исследовательский характер. Это не готовая замена стандартному attention, а попытка расширить его математическую форму.

Для ML-исследователей и инженеров, которые изучают новые формы внимания, альтернативы softmax и архитектуры для длинных последовательностей.

Экспериментально. Интересно. Не для продакшена - пока.

GitHub: github.com/yifanzhang-pro/MEA
4👍4