Анализ данных (Data analysis)
47.1K subscribers
2.68K photos
302 videos
1 file
2.3K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
⚡️ OpenAI выпустила GPT-5-Codex-Mini.

GPT-5-Codex-Mini - более доступная версия флагманского Codex, она в 4 раза эффективней по затратам по сравнению с полной версией GPT-5-Codex при небольшом компромиссе в производительности.

Разница в возможностях минимальна: на SWE-bench Verified версия Mini набрала 71.3%, в то время как старшая GPT-5-Codex - 74.5%. OpenAI рекомендует переключаться на Mini для решения более простых задач или для экономии ресурсов при приближении к лимитам. Старший Codex будет автоматически предлагать переход на Mini, когда пользователь достигнет 90% своего лимита.

Модель уже доступна в CLI и расширении для IDE, а в скором времени появится и поддержка через API.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥103
Forwarded from Machinelearning
🌟 RL-фреймворк для обучения MoE-моделей от создателей Chatbot Arena.

Miles - фреймворк для RL-обучения от команды LMSYS ORG, ориентированный на энтерпрайз-уровень.

Если вы следите за опенсорс разработками, вы наверняка слышали о предшественнике этой системы, проекте slime. Это легкий инструмент, который используют во многих современных пайплайнов пост-трейна. На нем, кстати, запускали GLM-4.6.

Slime доказал, что легковесный дизайн работает, и Miles делает следующий шаг - масштабное обучение архитектур MoE и поддержка тяжелых промышленных нагрузок.

🟡Технические детали.

Miles предлагает то, что называют "True On-Policy". Раньше между тренировкой и инференсом часто возникало расхождение. Теперь же, благодаря инфраструктурному подходу, LMSYS добилась нулевой дивергенции. Это стало возможным благодаря использованию Flash Attention 3, библиотеки DeepGEMM и ядер от Thinking Machines Lab, работающих в связке с torch.compile.

Вторая особенность - в использовании спекулятивного декодирования. Обычно в RL черновая модель замораживается, что мешает ей следовать политике целевой модели. LMSYS добавили онлайн-обучение черновой модели.

Результаты на тестах положительные: ускорение генерации более чем на 25%, особенно на поздних стадиях обучения.

🟡Стабильность.

Для энтерпрайза память - это деньги. В Miles включили механизмы, предотвращающие падение системы при некритичных ошибках OOM и исправили чрезмерное потребление памяти в FSDP.

В дорожной карте проекта обещают поддержку мультимодального обучения, совместимость со SGLang v2 и расширенное спекулятивное декодирование.


🟡Статья
🖥Github


@ai_machinelearning_big_data

#AI #ML #RL #Miles #LMSYS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥32🥰1
🤖 Multi-Agent Evolve теперь полностью open-source 🚀

С его кодовой базой ты можешь взять любой LLM-чекпойнт и позволить ему саморазвиваться без внешнего надзора.
Это экспериментальная система, в которой агенты эволюционируют, создавая и оценивая собственные улучшения.

💻 Код:
https://github.com/ulab-uiuc/Multi-agent-evolve

🤗 Модели (Checkpoints):
https://huggingface.co/collections/ulab-ai/multi-agent-evolve

#AI #LLM #MultiAgent #OpenSource #EvolutionaryAI
🔥15👍2🥰2🤨1