Анализ данных (Data analysis)
46.8K subscribers
2.59K photos
299 videos
1 file
2.25K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🧠 Google предлагает новый подход к обучению моделей - “Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning”.

Суть: модель учится не угадывать готовый ответ, а планировать и проверять каждый шаг рассуждений.

- Вместо финальной оценки SRL даёт награду за каждый шаг цепочки
- Модель учится думать поэтапно, а не просто копировать решение
- Маленькие модели получают реальный сигнал обучения и тоже начинают планировать

Результаты впечатляют:
- AIME24: +3.4% (13.3% → 16.7%) на модели 7B
- SRL→RLVR: 57.5% на AMC23 (greedy)
- Код-агенты: 14.8% oracle resolve rate
- В инженерных задачах из 5K траекторий сделали 134K пошаговых примеров, SRL дал 8.6% фиксов кода с greedy - выше, чем SFT-coder

Как это работает
- Экспертное решение режут на маленькие шаги
- Модель делает шаг → получает оценку близости к эксперту
- Используют текст-matcher + небольшой формат-штраф
- Обновления в стиле GRPO с динамическим выбором батчей, чтобы избегать пустых сигналов

Что получает модель
- Раннее планирование
- Коррекция по ходу
- Самопроверка результата
- При этом ответы не становятся длиннее - качество растёт за счёт мышления, а не болтовни

SRL выглядит как естественный мост между supervised обучением и классическим RL: контролируемая стабильность + глубина рассуждений.

📄 arxiv.org/abs/2510.25992

@data_analysis_ml
12🔥8👍2
6 ноября в 15:00 (МСК) — вебинар «Загрузка в 1С любых данных без программирования. Инжектор 1С» от Денвик и партнёра Инфостарт.

💬 Спикер — Степан Пыстин, технический директор и BI-внедренец. Он покажет, как работает инструмент Инжектор 1С — визуальный коннектор для загрузки данных из внешних БД в 1С без кода. Подробнее про функции: bi.denvic.ru/products/inzhektor-1s-instrument-zagruzki-dannykh-v-1s
На вебинаре обсудят методы загрузки данных, сценарии миграции и интеграции без программирования, визуальный конструктор и автодозагрузку данных.

🔧 Полезно архитекторам и разработчикам 1С, архитекторам данных и менеджерам проектов, где используется 1С.
➡️ Регистрация открыта: https://webinar-denvic.ru/?utm_source=tg_post_denvik3
1🙏1
Media is too big
VIEW IN TELEGRAM
🧠 IBM объясняет, как математика симметрий помогает создавать новые квантовые алгоритмы

Математика групп — это про симметрии: как объекты можно менять местами, вращать или переставлять, и что при этом остаётся неизменным.

IBM показывает, что те же самые идеи лежат в основе квантовых вычислений — и помогают искать задачи, где квантовые алгоритмы могут быть быстрее классических.

Ключевые идеи:
- Симметрии в природе описываются теорией групп
- Квантовые системы тоже подчиняются симметриям
- Если правильно описать задачу через симметрии, можно найти квантовый алгоритм с ускорением
- IBM работает с более сложными (не-абелевыми) симметриями — это следующий уровень, сложнее и мощнее

Зачем это всё
Мы ещё не нашли много «убойных» квантовых алгоритмов.
Подход через симметрии — это способ открывать новые, а не только улучшать старые.

Если коротко:
Математика симметрий может стать картой для поиска новых квантовых алгоритмов.

Подробнее: https://www.ibm.com/quantum/blog/group-theory
Видео: https://www.youtube.com/watch?v=eSy-pwkLiIQ

#quantum #math #grouptheory #IBMQuantum #algorithms
🔥135
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Google разместит ИИ-вычисления на околоземной орбите.

Google анонсировала проект Suncatcher, который будет строить ML-инфраструктуру в космическом пространстве. Концепция состоит из развертывания группировок спутников, оснащенных TPU и связанных оптическими каналами. Идея проекта в том, что на правильной орбите солнечная панель может быть до 8 раз продуктивнее, чем на Земле, а значит космос - это лучшее место для масштабирования вычислений.

Для реализации еще предстоит решить как поддерживать высокоскоростную межспутниковую связь, которая требует полета аппаратов в очень плотном строю (километр или менее). К началу 2027 года планируют запуск двух прототипов спутников для проверки работы оборудования на орбите.
research.google

✔️ Microsoft Azure преодолела барьер инференса в 1 млн. т/с.

Новый рекорд производительности был получен на виртуальных машинах Azure ND GB300 v6, запущенных на стоечной системе NVIDIA GB300 NVL72. В ходе тестов была достигнута совокупная скорость инференса модели Llama 2 70B в 1.1 млн токенов в секунду. Это на 27% больше предыдущего рекорда, установленного на GB200.

Новая конфигурация дала почти пятикратный прирост пропускной способности на один GPU по сравнению с поколением H100. Ключевыми факторами стали возможности архитектуры Blackwell, использование FP4 и оптимизация библиотеки NVIDIA TensorRT-LLM. Результаты были подтверждены независимой аналитической компанией Signal 65. Логи запуска тестового инстанса можно посмотреть на Github.
techcommunity.microsoft.com

✔️ ArXiv ужесточает модерацию CS-статей.

Платформа вводит новые, более строгие правила для раздела Computer Science. Причиной стал резкий рост числа обзорных и концептуальных статей низкого качества, многие из которых созданы с помощью нейросетей.

Теперь работы будут приниматься к публикации только после того, как их одобрят в рецензируемом научном журнале или на конференции. Авторам потребуется предоставить соответствующее подтверждение при загрузке работы, в противном случае статья будет отклонена. Новая политика не затрагивает обычные исследовательские статьи, однако в будущем может быть распространена и на другие научные области, если там возникнет схожая проблема.
blog.arxiv.org

✔️ AgiBot запустила роботов, обучающихся с подкреплением в реальном мире.

AgiBot в партнерстве с Longcheer Technology развернула систему обучения с подкреплением в реальном мире (RW-RL) на пилотной производственной линии. Это первый подтвержденный случай промышленного применения технологии, которая позволяет роботам обучаться непосредственно в процессе работы, а не следовать жестким инструкциям.

С RW-RL роботы AgiBot осваивают новые навыки за минуты, автономно адаптируясь к изменениям в деталях или производственных допусках. Система поддерживает стабильность промышленного уровня и не требует сложной аппаратной модификации при смене продукта. После успешного пилотного проекта компании планируют расширить применение RW-RL на сборку потребительской электроники и автомобильных компонентов.
gizmochina.com

✔️ Remote Labor Index: топовые ИИ-модели проваливают 97% реальных фриланс-задач.

Scale AI и Center for AI Safety опубликовали результаты бенчмарка Remote Labor Index, который оценивает способность ИИ выполнять реальную работу фрилансеров. В рамках теста исследователи взяли 240 завершенных проектов с биржи Upwork и поставили идентичные задачи 6 топовым ИИ-системам.

Результаты показали, что даже лучшие модели справились с заданиями на человеческом уровне лишь в 2.5% случаев. Почти 97% работ были признаны неудовлетворительными из-за низкого качества, неполных данных или поврежденных файлов. ИИ справился только с узкими задачами: создание логотипов или сведение аудио.

Тест наглядно подсветил огромный разрыв между показателями ИИ на синтетических бенчмарках и его реальной готовностью к автоматизации сложных проектов.
scale.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍7🔥7😢1
Google DeepMind представили IMO-Bench - набор тестов, который проверяет математические способности ИИ на уровне Международной математической олимпиады (IMO).

Что внутри:
IMO-AnswerBench - 400 задач с короткими ответами
IMO-ProofBench - 60 задач, где нужно написать доказательство
IMO-GradingBench - 1000 готовых доказательств для автоматической проверки

Главная идея проста: перестать измерять только правильные ответы и начать оценивать глубину рассуждений, умение строить логические цепочки и строгие доказательства, как у олимпийских математиков.

Результаты:
Модель Gemini Deep Think показала:
80.0% на AnswerBench
65.7% на ProofBench

Это уровень золотой медали IMO - и заметно выше, чем у GPT-5 и Grok-4.

https://x.com/lmthang/status/1985760224612057092
6🔥3👍2
Microsoft показала, как облако может выжать максимум из ИИ-железа

Azure ND GB300 v6 - новые VM на NVIDIA Blackwell пробили барьер: 1 100 000 токенов в секунду при работе с Llama-2-70B.

Что сделали:
— использовали новые Blackwell-GPU с большей памятью
— оптимизировали под TensorRT-LLM и FP4
— объединили 18 машин в один кластер
— выжали рекордный throughput без качества-в-ноль


2025 - год, когда облако и железо реально начинают тянуть модели на миллион+ токенов/с.
AI-инфраструктура становится конкурентным преимуществом.

https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/breaking-the-million-token-barrier-the-technical-achievement-of-azure-nd-gb300-v/4466080
🔥12👍2🥰2😱1
🍏 Apple готовит сделку на 1 млрд долларов в год с Google, чтобы встроить 1.2-триллионную модель Gemini в новое поколение Siri.

Обновленная Siri под кодовым именем Linwood выйдет следующей весной. Gemini будет отвечать за функции суммаризации и планирования, а собственные модели Apple сохранят ограниченные роли.

Параллельно Apple в ускоренном режиме разрабатывает свою модель на 1 триллион параметров, чтобы уже в следующем году заменить технологию Google, если догонит по качеству.

https://www.bloomberg.com/news/articles/2025-11-05/apple-plans-to-use-1-2-trillion-parameter-google-gemini-model-to-power-new-siri
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥124👍4🤨1
🧠 Perplexity выпустила свой первый исследовательский paper - и он про то, как заставить сверхкрупные модели работать на десятках AWS-GPU одновременно.

Обычно это невозможно: сеть AWS (EFA) не поддерживает GPUDirect Async, поэтому GPU на разных машинах не могут обмениваться данными достаточно быстро.

Инженеры нашли обходной путь: они построили новый софт, который передаёт координацию CPU, позволяя GPU всё равно синхронизироваться почти напрямую.
Это делает эффективным инференс моделей на *1 триллион параметров* на обычных AWS-кластерах, а не только на специализированных суперкомпьютерах.

Они подготовили expert-parallel ядра для быстрого MoE-инференса на AWS EFA:
1T MoE работает практически без деградации, а многонодовый режим сопоставим или быстрее однонодового на 671B DeepSeek V3 при средних батчах — и открывает путь к сервингу Kimi K2.

Проблема: EFA не поддерживает GPUDirect Async, а стандартный NVSHMEM-proxy даёт маршрутизацию MoE c задержками выше 1 мс.

Решение: ядра упаковывают токены в единичные RDMA-записи прямо с GPU, а специальный CPU-поток запускает передачу и перекрывает её с вычислениями GEMM.
Итог — EFA внезапно становится рабочим вариантом для массивного MoE-инференса.

Это крепкая инженерия и адекватный баланс точности и памяти для команд, которым нужна переносимость между облаками.

https://research.perplexity.ai/articles/enabling-trillion-parameter-models-on-aws-efa
11🔥9👍5👏2