C++ geek
3.73K subscribers
276 photos
4 videos
25 links
Учим C/C++ на примерах
Download Telegram
🏗 Анатомия std::vector: Что происходит, когда место заканчивается?

std::vector - самый популярный контейнер в C++. Мы просто пишем push_back, и магия работает. Но что происходит «под капотом», когда вы пытаетесь добавить элемент, а свободное место (capacity) закончилось?

Происходит Реаллокация. И это гораздо дороже, чем просто добавление числа.

⚙️ Сценарий катастрофы (пошагово):

Допустим, у вектора было место под 4 элемента, и оно занято. Вы добавляете 5-й.

1. Поиск новой земли: Вектор понимает, что текущий буфер полон. Он просит у операционной системы выделить новый блок памяти (обычно в 1.5 или 2 раза больше старого).

2. Великое переселение: Все элементы из старого блока копируются (или перемещаются) в новый.
- Представьте: чтобы поставить на полку одну новую книгу, вам приходится переезжать в новую квартиру и перетаскивать туда всю библиотеку.

3. Зачистка: Старые объекты разрушаются (вызываются деструкторы), а старая память возвращается системе.

4. Вставка: И только теперь новый элемент добавляется в хвост.

🚨 Почему это проблема?

1. Удар по производительности
Операция push_back обычно мгновенна (). Но при реаллокации она превращается в тяжелую операцию . Если вектор огромный, программа может «подвиснуть» в самый неподходящий момент.

2. Инвалидация ссылок (Источник багов №1)
Это самое опасное. Как только произошла реаллокация, старая память удаляется. Все указатели, ссылки и итераторы, которые смотрели на элементы вектора, становятся невалидными.


std::vector<int> data = {1, 2, 3, 4};
int& ref = data[0]; // Ссылка на первый элемент

// Добавляем элемент -> места нет -> реаллокация!
data.push_back(5);

// ☠️ ОШИБКА: ref ссылается на очищенную память.
// Получим мусор или краш программы.
std::cout << ref;



🛡 Как лечить?

Если вы знаете (хотя бы примерно), сколько элементов будет в векторе - используйте reserve().


std::vector<int> data;
data.reserve(1000); // Сразу выделяем память

// Теперь реаллокации точно не будет,
// пока мы не превысим 1000 элементов.



💡 Итог: Помогайте вектору с помощью reserve(). Это спасает и от тормозов, и от сложнейших багов с памятью.

#cpp #stdvector #memory #performance #coding #tips

➡️ @cpp_geek
👍111
🏗 Тетрис в памяти: Почему порядок полей в классе важен?

Вы создали простую структуру: bool, int и еще один bool.
Математика проста: 1 байт + 4 байта + 1 байт = 6 байт.

Вы проверяете через sizeof и видите... 12 байт. 🤯
Куда делись еще 6 байт? Вы только что потеряли 50% памяти на "воздух".

Это называется Padding (Выравнивание).

⚙️ Как это работает?
Процессор не любит читать данные по произвольным адресам. Ему удобно читать кусками по 4 или 8 байт (слова). Чтобы int (4 байта) не "разломился" посередине двух слов, компилятор вставляет пустые байты-заглушки.

Плохой пример (Bad Layout):


struct Bad {
bool a; // 1 байт
// ... 3 байта PADDING (воздух) ...
int b; // 4 байта (должен начинаться с кратного 4 адреса)
bool c; // 1 байт
// ... 3 байта PADDING (чтобы выровнять общий размер) ...
};
// Итог: 12 байт



Хороший пример (Good Layout):

Просто меняем порядок полей. Правило: "От больших к маленьким".


struct Good {
int b; // 4 байта
bool a; // 1 байт
bool c; // 1 байт
// ... 2 байта PADDING (добиваем до кратности 4) ...
};
// Итог: 8 байт



📉 Почему это важно?
Кажется, что 4 байта ерунда. Но если у вас std::vector<Bad> на 1,000,000 элементов:

⚫️Bad: ~12 MB памяти.
⚫️Good: ~8 MB памяти.

Вы экономите 4 мегабайта просто переставив строчки местами! Плюс, более плотные данные лучше ложатся в кэш процессора (CPU Cache), что ускоряет обработку.

💡 Совет:
Объявляйте поля в порядке убывания их размера:

1. Указатели и double (8 байт)
2. int, float (4 байта)
3. short (2 байта)
4. bool, char (1 байт)

#cpp #optimization #memory #alignment #coding #tips

➡️ @cpp_geek
Please open Telegram to view this post
VIEW IN TELEGRAM
👍124💯1
🔒 const в C++: Скрытый смысл, о котором молчат

Мы привыкли думать, что const после имени метода это просто защита от дурака: "Я обещаю не менять поля класса внутри этой функции".

Но в современном C++ (и в стандартной библиотеке STL) const означает нечто большее. Это контракт потокобезопасности (Thread Safety Contract).

🧵 Золотое правило STL:

1. const методы можно вызывать из разных потоков одновременно без блокировок. (Safe for concurrent reads).

2. Не-const методы требуют внешней синхронизации, если их вызывают несколько потоков.

🚨 Где кроется ловушка?

Ловушка в ключевом слове mutable.
Оно позволяет менять поля даже внутри const метода. Обычно это используют для кэширования или ленивых вычислений.

ОПАСНЫЙ КОД (Логический const, но физическая гонка):


class Widget {
mutable int cachedValue_ = -1; // Можно менять в const методе

public:
// Метод помечен const. Пользователь думает, что он безопасен
// для вызова из 10 потоков одновременно.
int GetValue() const {
if (cachedValue_ == -1) {
// 💥 DATA RACE!
// Два потока могут одновременно зайти сюда и начать писать.
cachedValue_ = HeavyCalculation();
}
return cachedValue_;
}
};



Если вы пишете библиотеку и помечаете метод как const, пользователи будут вызывать его параллельно, не используя мьютексы. Если внутри у вас есть несинхронизированный mutable - программа упадет.

Правильный подход:

Если вы используете mutable, вы обязаны защитить его мьютексом.


class Widget {
mutable std::mutex mtx_; // Мьютекс тоже должен быть mutable!
mutable int cachedValue_ = -1;

public:
int GetValue() const {
std::lock_guard<std::mutex> lock(mtx_); // Блокируем поток

if (cachedValue_ == -1) {
cachedValue_ = HeavyCalculation();
}
return cachedValue_;
}
};



💡 Итог: В C++ const - это не только "я не меняю данные". Это обещание: "Этот метод безопасен для одновременного вызова". Если вы нарушаете это обещание (используя mutable без защиты), вы создаете бомбу замедленного действия.

#cpp #multithreading #const #safety #coding #tips

➡️ @cpp_geek
👍51