Complex Systems Studies
2.3K subscribers
1.54K photos
121 videos
114 files
4.45K links
What's up in Complexity Science?!
Check out here:

@ComplexSys

#complexity #complex_systems #networks #network_science

📨 Contact us: @carimi
Download Telegram
#PhD at ITU at the intersection of AI, Network Science and Computational Social Science

https://candidate.hr-manager.net/ApplicationInit.aspx?cid=119&ProjectId=181658&DepartmentId=3439&MediaId=5
👍2
Mark Newman | Leaders and Best: Networks and Ranking in Sports, Markets, and Society

One of the oldest of network problems is the ranking of individuals, teams, or commodities on the basis of pairwise comparisons between them. For example, if you know which football teams beat which others in a particular year, can you say which team is the best overall? This is a harder problem than it sounds because not all pairs of teams play games in a given season, and also because the outcomes of the games can be ambiguous or contradictory. This talk will introduce the techniques used to solve such ranking problems, with examples from games and sports, consumer research and marketing, and social hierarchies in both animal and human communities, then ask how those techniques can be extended to answer a range of new questions about competition and ranking, including the development of new computer algorithms for ranking, questions about the varying patterns of competition in different sports, and what happens when individuals or teams compete in multiple different ways.

https://www.mivideo.it.umich.edu/playlist/dedicated/293581272/1_gz6diy1y/1_ke40xxtk
👍2
"Ambitions for theory in the physics of life" (by William Bialek): https://arxiv.org/abs/2401.15538

[note: Lectures at the 2023 Les Houches Summer School, Theoretical Biophysics]

Theoretical physicists have been fascinated by the phenomena of life for more than a century. As we engage with more realistic descriptions of living systems, however, things get complicated. After reviewing different reactions to this complexity, I explore the optimization of information flow as a potentially general theoretical principle. The primary example is a genetic network guiding development of the fly embryo, but each idea also is illustrated by examples from neural systems. In each case, optimization makes detailed, largely parameter-free predictions that connect quantitatively with experiment
Up to 6 fully-funded #PhD positions in Data Science for Oct 2024, Trieste (Italy): 4 years, no restriction on nationality - applications from candidates from under-represented groups especially encouraged!

http://datascience.sissa.it/apply
Multiple #Postdoc positions in Budapest
https://centerforcollectivelearning.org/jobs

The Computational Inequalities Research Group, led by Orsolya Vásárhelyi is looking for two Postdoctoral Research Fellows for full-time positions (40 hours/week) at the Center for Collective Learning (CCL) at Corvinus University at the Corvinus University of Budapest.
13 #PhD positions in Machine Learning, Statistics, Logic, Language Technology, and Ethics
Integreat, The Norwegian Centre for Knowledge-driven Machine Learning, https://www.jobbnorge.no/en/available-jobs/job/257181/13-phd-positions-in-knowledge-driven-machine-learning
#Coxeter Lecture Series will be delivered by 2022 Fields Medallist Hugo Duminil-Copin.

Do NOT miss an opportunity to hear his talks in-person or online!

Register: http://www.fields.utoronto.ca/activities/23-24/Duminil-Copin
The physics of financial networks

As the total value of the global financial market outgrew the value of the real economy, financial institutions created a global web of interactions that embodies systemic risks. Understanding these networks requires new theoretical approaches and new tools for quantitative analysis. Statistical physics contributed significantly to this challenge by developing new metrics and models for the study of financial network structure, dynamics, and stability and instability. In this Review, we introduce network representations originating from different financial relationships, including direct interactions such as loans, similarities such as co-ownership and higher-order relations such as contracts involving several parties (for example, credit default swaps) or multilayer connections (possibly extending to the real economy). We then review models of financial contagion capturing the diffusion and impact of shocks across each of these systems. We also discuss different notions of ‘equilibrium’ in economics and statistical physics, and how they lead to maximum entropy ensembles of graphs, providing tools for financial network inference and the identification of early-warning signals of system-wide instabilities.

https://www.nature.com/articles/s42254-021-00322-5
👍8
سخنرانی‌های عمومی برخط دانشکده فیزیک بهشتی

🦠 علم شبکه و مدل‌سازی پخش بیماری‌ در حضور مداخله‌‌ها (۱۵:۰۰)
📼 قوس داستانی و خم‌های عاطفی در قصه‌ها (۱۶:۰۰)

چهارشنبه ۲ اسفند ۴۰۲ ساعت ۱۵:۰۰
عباس ریزی — دانشگاه آلتو، فنلاند

شرکت برای همه از طریق این پیوند آزاد و رایگان است:

🔗 meet.google.com/whe-obvb-ger

----------------------------------------------
@sitpor | sitpor.org
instagram.com/sitpor_media
#سیتپـــــور به خاطر روایتگری در علم
👍6👎2
DAMUT Colloquium | 28 Feb, 2024, 12:45 to 13:15
Department of Applied Mathematics, University of Twente (UT)

Consequences of Social Network Structure for Epidemic Interventions


Abbas K. Rizi (Aalto University)

Abstract:
The COVID-19 pandemic has highlighted gaps in our understanding of how epidemics spread and the limitations of simple models in real-world scenarios, particularly when it comes to understanding herd immunity. In this presentation, we will focus on how the structure of contact networks affects the spread of disease and the effectiveness of interventions. We will explore the impact of pharmaceutical interventions, such as vaccination, and non-pharmaceutical measures, like contact tracing, on the trajectory of epidemics. We will consider factors such as behavior-based homophily, group structures, spatial characteristics, and the heterogeneities of contact networks. Additionally, we will introduce an advanced theoretical framework for analyzing temporal dynamics in networks, which is crucial for understanding how diseases spread, how information is disseminated, and how public transportation systems are accessed over time. Finally, we will connect the concept of temporal network reachability with percolation theory, a significant concept in studying complex systems.

https://www.utwente.nl/en/eemcs/damut/damutcolloquium/
👍1
Configuration models for random directed hypergraphs
Yanna J. Kraakman, Clara Stegehuis

Many complex systems show non-pairwise interactions, which can be captured by hypergraphs. In this work, we establish configuration models in which both the vertex and the hyperarc degrees are preserved for different classes of directed hypergraphs (containing self-loops, degenerate hyperarcs and/or multiple hyperarcs). We propose an edge-swapping method to uniformly sample from these configuration models and prove that this method indeed samples uniformly from the classes with self-loops and multiple hyperarcs, and that the method does not sample uniformly from classes without self-loops, or with self-loops and degenerate hyperarcs but without multiple hyperarcs. We present a partial result on the class with self-loops, but without degenerate hyperarcs or multiple hyperarcs.

https://arxiv.org/abs/2402.06466
👍3
Media is too big
VIEW IN TELEGRAM
قوس داستانی و خم‌های عاطفی در قصه‌ها

کِرْت وانه‌گت، نویسنده فقید آمریکایی، معتقد بود که تمام داستان‌ها را می‌توان بر اساس شکل روایی و قوس داستانی آن‌ها به دسته‌های انگشت‌شماری طبقه‌بندی کرد. این ادعا سال‌ها بعد به صورت کمی راستی‌آزمایی شد. در این ارائه ابتدا ادبیات داستان‌پردازی محاسباتی را مرور می‌کنیم. سپس نشان می‌دهیم که سریال‌های ترکی در سال‌های گذشته عمدتا چه نوع قوس داستانی داشته‌اند و کم و کیف موفقیتشان در گیشه چگونه بوده است.

📃 اسلایدها
🎙فایل صوتی
🎞 ویدیو در یوتیوب
----------------------------------------------
@sitpor | sitpor.org
instagram.com/sitpor_media
#سیتپـــــور به خاطر روایتگری در علم
👍6👎2
🔻 انجمن علمی فیزیک دانشگاه شیراز برگزار می‌کند:

📌 چهارمین مدرسه زمستانی فیزیک آماری و سامانه‌های پیچیده

🎙 باحضور:
دکتر افشین منتخب
دکتر فرهاد شهبازی
دکتر محسن قاسمی‌نژاد
دکتر ابوالفضل رمضان‌پور


زمان برگزاری: پنج شنبه ۱۷ اسفندماه
ساعت ۹ الی ۱۷:۳۰

📍 محل برگزاری: سالن کنفرانس بخش فیزیک
 
🔊مخاطبان: دانشجویان، اساتید و فارغ التحصیلان رشته‌های ریاضی، فیزیک، علوم کامپیوتر و رشته های مرتبط و دیگر علاقه‌مندان.

❗️ به همراه پذیرایی و ناهار

⭕️ علاقه‌مندان محترم جهت کسب اطلاعات بیشتر و ثبت‌نام، می‌توانند کد درج شده در پوستر را اسکن، و یا از طریق لینک زیر اطلاعات لازم را دریافت کنند:
https://evnd.co/EsEAw


@ShirazUPhysics 💡