Complex Systems Studies
2.31K subscribers
1.54K photos
121 videos
114 files
4.46K links
What's up in Complexity Science?!
Check out here:

@ComplexSys

#complexity #complex_systems #networks #network_science

📨 Contact us: @carimi
Download Telegram
Chaos: Sandpile cascades on oscillator networks: The BTW model meets Kuramoto
https://t.co/JThhS4R4E5
How is the complexity of statistical physics connected to computation and language structure? This is a deep problem. Here's a paper on an elegant formalization that links spin Hamiltonians & the Chomsky's hierarchy https://t.co/SllPLDRevf
👍4
🚨 What we know & don’t know about #monkeypox, & how to think about the current outbreak.

One thing: It’s unique partly because it’s, er, happening amid a pandemic. Our reactions are deeply influenced by the last 3 years—in good & bad ways...

https://t.co/SvEntsKEd3
👍2
Forwarded from انجمن علمی فیزیک شریف (Ali Ekramian)
⭕️ سمینار‌های فیزیک آماری ⭕️
💡 موضوع ارائه: چرا از فواصل موسیقی لذت می‌بریم؟
🗣 ارائه دهنده: علیرضا ولیزاده (دانشگاه تحصیلات تکمیلی علوم پایه‌ی زنجان زنجان)
📅 زمان ارائه: یک‌شنبه ۱ خرداد، ساعت ۱۵:۰۰
🚪 محل برگزاری:
اتاق ۵۱۲ دانشکده‌ی فیزیک
و همزمان در اتاق مجازی گروه فیزیک آماری

💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#سمینار_فیزیک_آماری
💢#دکتر_مقیمی #دکتر_قنبرنژاد #دکتر_روحانی

🆔 @anjoman_elmi_phys_sut
👍6
Concept of #emergence - a well-recognized phenomenon which characterizes complex systems. https://t.co/SKibTGNknq
👍6
When is a network tree-like and how does it help in exploring dynamics?

https://youtu.be/PF6lakapOhQ

Konstantin Klemm- IFISC

Tree-like approximation is a computational method commonly used for dynamic properties on quenched finite network realizations, including empirical networks. Percolation cluster sizes, epidemic thresholds, and Ising/Potts partition functions and magnetization are among such properties. That method is exact only when the network is a tree: removal of one inner node leaves the network fragmented, with each fragment again separable in the same way. A generalization of this recursive separation is called tree-decomposition of width k, allowing a set of up to k nodes as a separator in each step. In this talk, I show (i) how to find useful tree-decompositions and (ii) how to employ these to efficiently compute exact properties of the Ising model and other stochastic processes with detailed balance.
DEADLINE Extended to 5th June! CODATA-RDA Research Data Science Summer School 2022: apply to participate in person or online
https://t.co/TbIceCEKXz
Quantifying relevance in learning and inference!

seminar tomorrow 2:00 pm CET accompanying their recent review in Physics Reports.

https://t.co/6xfZduvJkx
Conference in Yerevan, (Armenia) https://t.co/KRSs6c5uBe Goldenfeld, Koonin, Saakian, Hogeweg, Wolpert, Kaneko, Takeuchi, Kolchinsky and so many other great scholars.
Opening for a #postdoc position at the CPT in Marseille, to work with me on the relations between pedestrian models and contact networks. #sociophysics #complexnetworks More information here: https://t.co/5XP8OKT1Tz
Order through entropy - Daan Frenkel

Understanding entropic contributions to common ordering transitions is essential for the design of self-assembling systems with addressable complexity

http://www.lptms.u-psud.fr/membres/trizac/Ens/IPa_2022/Frenkel_entropy_2014.pdf