Complex Systems Studies
Summer School: Mathematics of Large Networks The Mathematics of Large Networks Summer School is part of the Large networks and their limits (2022 Spring) semester. This summer school aims to bring together mathematicians and network scientists to foster…
MATHEMATICS OF
LARGE NETWORKS
SUMMER SCHOOL
A P P L I C A T I O N D E A D L I N E : F E B 1 , 2 0 2 2
LARGE NETWORKS
SUMMER SCHOOL
A P P L I C A T I O N D E A D L I N E : F E B 1 , 2 0 2 2
Quantifying Relevance in Learning and Inference
Review paper by Matteo Marsili, Yasser Roudi
https://arxiv.org/pdf/2202.00339
Learning is a distinctive feature of intelligent behaviour. High-throughput experimental data and Big Data promise to open new windows on complex systems such as cells, the brain or our societies. Yet, the puzzling success of Artificial Intelligence and Machine Learning shows that we still have a poor conceptual understanding of learning. These applications push statistical inference into uncharted territories where data is high-dimensional and scarce, and prior information on "true" models is scant if not totally absent. Here we review recent progress on understanding learning, based on the notion of "relevance". The relevance, as we define it here, quantifies the amount of information that a dataset or the internal representation of a learning machine contains on the generative model of the data. This allows us to define maximally informative samples, on one hand, and optimal learning machines on the other. These are ideal limits of samples and of machines, that contain the maximal amount of information about the unknown generative process, at a given resolution (or level of compression). Both ideal limits exhibit critical features in the statistical sense: Maximally informative samples are characterised by a power-law frequency distribution (statistical criticality) and optimal learning machines by an anomalously large susceptibility. The trade-off between resolution (i.e. compression) and relevance distinguishes the regime of noisy representations from that of lossy compression. These are separated by a special point characterised by Zipf's law statistics. This identifies samples obeying Zipf's law as the most compressed loss-less representations that are optimal in the sense of maximal relevance. Criticality in optimal learning machines manifests in an exponential degeneracy of energy levels, that leads to unusual thermodynamic properties.
Review paper by Matteo Marsili, Yasser Roudi
https://arxiv.org/pdf/2202.00339
Learning is a distinctive feature of intelligent behaviour. High-throughput experimental data and Big Data promise to open new windows on complex systems such as cells, the brain or our societies. Yet, the puzzling success of Artificial Intelligence and Machine Learning shows that we still have a poor conceptual understanding of learning. These applications push statistical inference into uncharted territories where data is high-dimensional and scarce, and prior information on "true" models is scant if not totally absent. Here we review recent progress on understanding learning, based on the notion of "relevance". The relevance, as we define it here, quantifies the amount of information that a dataset or the internal representation of a learning machine contains on the generative model of the data. This allows us to define maximally informative samples, on one hand, and optimal learning machines on the other. These are ideal limits of samples and of machines, that contain the maximal amount of information about the unknown generative process, at a given resolution (or level of compression). Both ideal limits exhibit critical features in the statistical sense: Maximally informative samples are characterised by a power-law frequency distribution (statistical criticality) and optimal learning machines by an anomalously large susceptibility. The trade-off between resolution (i.e. compression) and relevance distinguishes the regime of noisy representations from that of lossy compression. These are separated by a special point characterised by Zipf's law statistics. This identifies samples obeying Zipf's law as the most compressed loss-less representations that are optimal in the sense of maximal relevance. Criticality in optimal learning machines manifests in an exponential degeneracy of energy levels, that leads to unusual thermodynamic properties.
👍1
A review/perspective of how our statistical field theory of information dynamics has been applied to better understand a variety of empirical complex systems.
https://t.co/0EtLPsf7LI
https://t.co/0EtLPsf7LI
👍1
Mathematics Behind Critical Phenomena:
https://youtu.be/Ei7EMfdpCDc
Kalle Kytölä
Department of Mathematics and Systems Analysis
https://youtu.be/Ei7EMfdpCDc
Kalle Kytölä
Department of Mathematics and Systems Analysis
YouTube
Mathematical physics: Laws of nature (en)tangle with logic – Kalle Kytölä
Aalto University Tenured Professors' Installation Talks, October 24, 2018.
“Mathematical physics: Laws of nature (en)tangle with logic”
Kalle Kytölä
Department of Mathematics and Systems Analysis
School of Science
http://www.aalto.fi/en/about/careers/tenure_track/…
“Mathematical physics: Laws of nature (en)tangle with logic”
Kalle Kytölä
Department of Mathematics and Systems Analysis
School of Science
http://www.aalto.fi/en/about/careers/tenure_track/…
One #PhD opening to study complementarity mechanisms in networks #tudelft, sponsored by #NWO_Science.
This line of work is at the intersection of Network Science, Machine Learning, and Science of Science. Details at https://t.co/fPzLT8MgGv
This line of work is at the intersection of Network Science, Machine Learning, and Science of Science. Details at https://t.co/fPzLT8MgGv
A postdoc Researcher position open on optimization and machine learning fields! For details: https://t.co/OftbgNH0Oj
We offer a #postdoc position on network dynamics and modeling! Spread the word! The salary is expected to increase dramatically soon :)
We offer a #postdoc position on network dynamics and modeling! Spread the word! The salary is expected to increase dramatically soon :)
Rachith Aiyappa & @yy shows social network models with a weighted belief network within each individual can unify simple and contagion dynamics
Very cool
#NetSciX2022 @NetSciX2022 https://t.co/AmCbop5wea
Very cool
#NetSciX2022 @NetSciX2022 https://t.co/AmCbop5wea
Twitter
Hiroki Sayama
Rachith Aiyappa & @yy shows social network models with a weighted belief network within each individual can unify simple and contagion dynamics Very cool #NetSciX2022 @NetSciX2022
Here’s a mathematical take on variational inference that might be interesting to statistical physics types: https://t.co/n7GZbGBYcX
Dalton A R Sakthivadivel
More About What Mean Field Theory Actually Means
Wherein I discuss at length what puts the ‘mean’ in mean field theory, and why we minimise free energy to calculate it. Some more general comments on free energy are given, because I can’t help myself. The proofs (about the effective field in the middle,…
Forwarded from انجمن علمی فیزیک شریف (Reza K1)
⭕️مقالهخوانی در حوزهی سیستمهای پیچیده⭕️
💡 موضوع ارائه:
Emergence of cooperation through chain-reaction death
🗣 ارائه دهنده: دکتر سامان مقیمی
📅 زمان ارائه: چهارشنبه ۲۷ بهمن ساعت ۱۲
🚪 محل برگزاری:
🔗 اتاق مجازی سمینارها و مقالهخوانیهای گروه فیزیک آماری
📌 پیوست یک: لینک گروه مقاله خوانی سیستم های پیچیده
📌 پیوست دو: لینک مقاله
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#مقالهخوانی_سیستمهایپیچیده
💢#دکتر_مقیمی
💡 موضوع ارائه:
Emergence of cooperation through chain-reaction death
🗣 ارائه دهنده: دکتر سامان مقیمی
📅 زمان ارائه: چهارشنبه ۲۷ بهمن ساعت ۱۲
🚪 محل برگزاری:
🔗 اتاق مجازی سمینارها و مقالهخوانیهای گروه فیزیک آماری
📌 پیوست یک: لینک گروه مقاله خوانی سیستم های پیچیده
📌 پیوست دو: لینک مقاله
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#مقالهخوانی_سیستمهایپیچیده
💢#دکتر_مقیمی
Comment: Machine learning as a tool in theoretical science. Michael R. Douglas discusses recent advances and ponders on the impact of ML methods relying on synthetic data in mathematics and theoretical physics
https://t.co/T55fcxPc7C
https://t.co/T55fcxPc7C
Nature
Machine learning as a tool in theoretical science
Nature Reviews Physics - Machine learning methods relying on synthetic data are starting to be used in mathematics and theoretical physics. Michael R. Douglas discusses recent advances and ponders...
Forwarded from Sitpor.org سیتپـــــور
فردا ساعت ۸ شب در صفحه اینستاگرام انجمن علمی فیزیک دانشگاه تبریز یا صفحه سیتپـــــور میتونید برنامه زنده ما در مورد علم شبکه رو دنبال کنید.
توی این برنامه دوست داریم به پرسشهای شما پیرامون این شاخه از علم پاسخ بدیم. برای همین هر سوالی که به نظرتون میرسه رو میتونید موقع پخش زنده بپرسین!
🔴 instagram.com/sitpor_media
🔴 instagram.com/physics__tabriz
برای آشنایی بیشتر با سیستمهای پیچیده به اینجا سر بزنید و برای آشنایی بیشتر با علم شبکه این ویدیو رو میتونید ببینید.
-----------------------------------------------
@sitpor | sitpor.org
@anjoman_physics_tabriz_uni
#سیتپـــــور به خاطر روایتگری در علم
توی این برنامه دوست داریم به پرسشهای شما پیرامون این شاخه از علم پاسخ بدیم. برای همین هر سوالی که به نظرتون میرسه رو میتونید موقع پخش زنده بپرسین!
🔴 instagram.com/sitpor_media
🔴 instagram.com/physics__tabriz
برای آشنایی بیشتر با سیستمهای پیچیده به اینجا سر بزنید و برای آشنایی بیشتر با علم شبکه این ویدیو رو میتونید ببینید.
-----------------------------------------------
@sitpor | sitpor.org
@anjoman_physics_tabriz_uni
#سیتپـــــور به خاطر روایتگری در علم
👍1
According to a new study on memory involving a map of the brain’s responses to linguistic information, memories aren’t exact copies of past perceptions. In reality, they are much more similar to a semantic reconstruction of the experience. https://t.co/GD14oWU6BC #QuantaMagazine
Research on spreading phenomena, resilience and modularity in probabilistic graphs applied to disaster science.
#PhD position, call: https://t.co/cTy7yxa0hS (Project 5)]
#PhD position, call: https://t.co/cTy7yxa0hS (Project 5)]
Forwarded from انجمن علمی فیزیک شریف (Ali Ekramian)
⭕️ سمینارهای فیزیک آماری ⭕️
💡 موضوع ارائه: مدلسازی مداخلههای دارویی و غیردارویی برای کنترل همهگیریها
🗣 ارائه دهنده: عباس کریمی ریزی (دانشگاه آلتو فنلاند)
📅 زمان ارائه: یکشنبه ۱ اسفند ساعت ۱۵:۰۰
🚪 محل برگزاری:
🔗 اتاق مجازی گروه فیزیک آماری
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#سمینار_فیزیک_آماری
💢#دکتر_مقیمی #دکتر_قنبرنژاد #دکتر_روحانی
🆔 @anjoman_elmi_phys_sut
💡 موضوع ارائه: مدلسازی مداخلههای دارویی و غیردارویی برای کنترل همهگیریها
🗣 ارائه دهنده: عباس کریمی ریزی (دانشگاه آلتو فنلاند)
📅 زمان ارائه: یکشنبه ۱ اسفند ساعت ۱۵:۰۰
🚪 محل برگزاری:
🔗 اتاق مجازی گروه فیزیک آماری
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#سمینار_فیزیک_آماری
💢#دکتر_مقیمی #دکتر_قنبرنژاد #دکتر_روحانی
🆔 @anjoman_elmi_phys_sut
👍1
"Michael Fisher 1931–2021" (by Daniel Garisto_: https://t.co/b7vHgfsnsP
"Michael Fisher, a statistical physicist who excavated the secrets underlying critical phenomena across physics, chemistry, and biophysics, died November 26, 2021 at 90."
"Michael Fisher, a statistical physicist who excavated the secrets underlying critical phenomena across physics, chemistry, and biophysics, died November 26, 2021 at 90."
aps.org
Michael Fisher 1931-2021
The statistical physicist and APS Fellow is remembered for his insights into critical phenomena as well as the rigor and intensity he applied to his professional and personal endeavors.
👍1
The lab could have openings for a #PhD position (fully funded) & a #postdoc or assistant professor (not tenured) position starting next fall 2022. The topic is #NetworkMedicine
Feel free to contact us asap w/ an expression of interest and to arrange a meeting.
https://t.co/VrbqdViIJN
Feel free to contact us asap w/ an expression of interest and to arrange a meeting.
https://t.co/VrbqdViIJN
Manliodedomenico
Manlio De Domenico's Homepage
The Helsinki Summer School on Mathematical Ecology and Evolution 2022
https://wiki.helsinki.fi/display/BioMath/The+Helsinki+Summer+School+on+Mathematical+Ecology+and+Evolution+2022
Topics and lecturers
Josef Hofbauer (University of Vienna): Dynamical systems in mathematical ecology
Gergely Röst (University of Szeged): The mathematics of infectious diseases
Pieter Trapman (Stockholm University): Stochastic models of epidemics
Jarno Vanhatalo (University of Helsinki): Linking ecological models to data through Bayesian statistics
Christian Hilbe (Max Planck Institute for Evolutionary Biology): Dynamics of social behaviour
https://wiki.helsinki.fi/display/BioMath/The+Helsinki+Summer+School+on+Mathematical+Ecology+and+Evolution+2022
Topics and lecturers
Josef Hofbauer (University of Vienna): Dynamical systems in mathematical ecology
Gergely Röst (University of Szeged): The mathematics of infectious diseases
Pieter Trapman (Stockholm University): Stochastic models of epidemics
Jarno Vanhatalo (University of Helsinki): Linking ecological models to data through Bayesian statistics
Christian Hilbe (Max Planck Institute for Evolutionary Biology): Dynamics of social behaviour
Fully funded #PhD position in Statistical and Soft Matter Physics #TU_Munich. Your chance to make materials smart by teaching them to self-optimize for efficient transport. Do theory in collaboration with experiments.
https://t.co/I4shrEgAPE
https://t.co/I4shrEgAPE
portal.mytum.de
TUM - PhD in Statistical Physics (theory)
Join the team of Prof. Karen Alim at the TUM Campus Garching to investigate how we can use physics to make flow transport networks smart by teaching them to self-optimize for efficient transport. We are looking for a PhD student (m/f/d) to start at the…
#PhD student research assistant (MSc level) (gn) / #Postdoc research fellow (PhD level) (gn) with a focus on infectious disease epidemiology/mathematical modelling of infectious diseases
University of Münster, Germany
The Clinical Epidemiology Unit uses and develops modern statistical and mathematical methods for the analysis of primary and secondary data. A particular focus of the Unit is the application of dynamic mathematical modelling approaches to simulate the spread of infectious agents in human populations. The Unit is involved in various SARS-CoV-2 projects and is looking for a researcher to primarily work on new upcoming SARS-CoV-2 projects.
Apply Here
University of Münster, Germany
The Clinical Epidemiology Unit uses and develops modern statistical and mathematical methods for the analysis of primary and secondary data. A particular focus of the Unit is the application of dynamic mathematical modelling approaches to simulate the spread of infectious agents in human populations. The Unit is involved in various SARS-CoV-2 projects and is looking for a researcher to primarily work on new upcoming SARS-CoV-2 projects.
Apply Here
Very excited to announce the release of the #statnet Multilayer ERGM package developed during a fantastic collaboration with @PavelKrivitsky @KoehlyLaura and myself @SocNetAnalysts
@net_science #networkscience https://t.co/bFtjzj7PEB
@net_science #networkscience https://t.co/bFtjzj7PEB
GitHub
GitHub - statnet/ergm.multi: Fit, Simulate and Diagnose Exponential-Family Models for Multiple or Multilayer Networks
Fit, Simulate and Diagnose Exponential-Family Models for Multiple or Multilayer Networks - GitHub - statnet/ergm.multi: Fit, Simulate and Diagnose Exponential-Family Models for Multiple or Multilay...