I am teaching an 8-week course at Oxford on the fundamentals of topological data analysis (including persistent homology, cellular sheaves, & discrete Morse theory).
All Notes: https://t.co/gqZwXbwuOG
All Videos: https://t.co/qAQHr0JW4l
Course thread! (0/8) https://t.co/A820x6otnj
All Notes: https://t.co/gqZwXbwuOG
All Videos: https://t.co/qAQHr0JW4l
Course thread! (0/8) https://t.co/A820x6otnj
One of my favorite scientific figures is this one of the entropy levels of 100 world cities by the orientation of streets. The cities with most ordered streets: Chicago, Miami, & Minneapolis. Most disordered: Charlotte, Sao Paulo, Rome & Singapore. Paper: https://t.co/DTd5JiahmF https://t.co/OCdTHHfrbN
SpringerOpen
Urban spatial order: street network orientation, configuration, and entropy - Applied Network Science
Street networks may be planned according to clear organizing principles or they may evolve organically through accretion, but their configurations and orientations help define a city’s spatial logic and order. Measures of entropy reveal a city’s streets’…
"A First Look at First-Passage Processes" (by S. Redner): https://t.co/v0JbWBRbtb
"These notes are based on the lectures that I gave (virtually) at the Bruneck Summer School in 2021 on first-passage processes and some applications of the basic theory."
"These notes are based on the lectures that I gave (virtually) at the Bruneck Summer School in 2021 on first-passage processes and some applications of the basic theory."
“It is more productive to consider how bad things could get if we keep giving the virus opportunities to outwit us. Then we might do more to ensure that this does not happen.”
https://t.co/qI6Y5XrFdR
https://t.co/qI6Y5XrFdR
👍2
Interested in network medicine and bioinformatics? Here is your intro: https://t.co/pobeyTiR10 produced by our students.
Join the band at: https://t.co/gyNUa6dPbx
Thanks, Ayan Chatterjee, Samuel Westby, Ula Widocki,
Join the band at: https://t.co/gyNUa6dPbx
Thanks, Ayan Chatterjee, Samuel Westby, Ula Widocki,
YouTube
Network Medicine (Havana Parody)
Created by: Patrick SayersAyan ChatterjeeSamuel WestbyUla Widocki
Complex Systems Studies
Summer School: Mathematics of Large Networks The Mathematics of Large Networks Summer School is part of the Large networks and their limits (2022 Spring) semester. This summer school aims to bring together mathematicians and network scientists to foster…
MATHEMATICS OF
LARGE NETWORKS
SUMMER SCHOOL
A P P L I C A T I O N D E A D L I N E : F E B 1 , 2 0 2 2
LARGE NETWORKS
SUMMER SCHOOL
A P P L I C A T I O N D E A D L I N E : F E B 1 , 2 0 2 2
Quantifying Relevance in Learning and Inference
Review paper by Matteo Marsili, Yasser Roudi
https://arxiv.org/pdf/2202.00339
Learning is a distinctive feature of intelligent behaviour. High-throughput experimental data and Big Data promise to open new windows on complex systems such as cells, the brain or our societies. Yet, the puzzling success of Artificial Intelligence and Machine Learning shows that we still have a poor conceptual understanding of learning. These applications push statistical inference into uncharted territories where data is high-dimensional and scarce, and prior information on "true" models is scant if not totally absent. Here we review recent progress on understanding learning, based on the notion of "relevance". The relevance, as we define it here, quantifies the amount of information that a dataset or the internal representation of a learning machine contains on the generative model of the data. This allows us to define maximally informative samples, on one hand, and optimal learning machines on the other. These are ideal limits of samples and of machines, that contain the maximal amount of information about the unknown generative process, at a given resolution (or level of compression). Both ideal limits exhibit critical features in the statistical sense: Maximally informative samples are characterised by a power-law frequency distribution (statistical criticality) and optimal learning machines by an anomalously large susceptibility. The trade-off between resolution (i.e. compression) and relevance distinguishes the regime of noisy representations from that of lossy compression. These are separated by a special point characterised by Zipf's law statistics. This identifies samples obeying Zipf's law as the most compressed loss-less representations that are optimal in the sense of maximal relevance. Criticality in optimal learning machines manifests in an exponential degeneracy of energy levels, that leads to unusual thermodynamic properties.
Review paper by Matteo Marsili, Yasser Roudi
https://arxiv.org/pdf/2202.00339
Learning is a distinctive feature of intelligent behaviour. High-throughput experimental data and Big Data promise to open new windows on complex systems such as cells, the brain or our societies. Yet, the puzzling success of Artificial Intelligence and Machine Learning shows that we still have a poor conceptual understanding of learning. These applications push statistical inference into uncharted territories where data is high-dimensional and scarce, and prior information on "true" models is scant if not totally absent. Here we review recent progress on understanding learning, based on the notion of "relevance". The relevance, as we define it here, quantifies the amount of information that a dataset or the internal representation of a learning machine contains on the generative model of the data. This allows us to define maximally informative samples, on one hand, and optimal learning machines on the other. These are ideal limits of samples and of machines, that contain the maximal amount of information about the unknown generative process, at a given resolution (or level of compression). Both ideal limits exhibit critical features in the statistical sense: Maximally informative samples are characterised by a power-law frequency distribution (statistical criticality) and optimal learning machines by an anomalously large susceptibility. The trade-off between resolution (i.e. compression) and relevance distinguishes the regime of noisy representations from that of lossy compression. These are separated by a special point characterised by Zipf's law statistics. This identifies samples obeying Zipf's law as the most compressed loss-less representations that are optimal in the sense of maximal relevance. Criticality in optimal learning machines manifests in an exponential degeneracy of energy levels, that leads to unusual thermodynamic properties.
👍1
A review/perspective of how our statistical field theory of information dynamics has been applied to better understand a variety of empirical complex systems.
https://t.co/0EtLPsf7LI
https://t.co/0EtLPsf7LI
👍1
Mathematics Behind Critical Phenomena:
https://youtu.be/Ei7EMfdpCDc
Kalle Kytölä
Department of Mathematics and Systems Analysis
https://youtu.be/Ei7EMfdpCDc
Kalle Kytölä
Department of Mathematics and Systems Analysis
YouTube
Mathematical physics: Laws of nature (en)tangle with logic – Kalle Kytölä
Aalto University Tenured Professors' Installation Talks, October 24, 2018.
“Mathematical physics: Laws of nature (en)tangle with logic”
Kalle Kytölä
Department of Mathematics and Systems Analysis
School of Science
http://www.aalto.fi/en/about/careers/tenure_track/…
“Mathematical physics: Laws of nature (en)tangle with logic”
Kalle Kytölä
Department of Mathematics and Systems Analysis
School of Science
http://www.aalto.fi/en/about/careers/tenure_track/…
One #PhD opening to study complementarity mechanisms in networks #tudelft, sponsored by #NWO_Science.
This line of work is at the intersection of Network Science, Machine Learning, and Science of Science. Details at https://t.co/fPzLT8MgGv
This line of work is at the intersection of Network Science, Machine Learning, and Science of Science. Details at https://t.co/fPzLT8MgGv
A postdoc Researcher position open on optimization and machine learning fields! For details: https://t.co/OftbgNH0Oj
We offer a #postdoc position on network dynamics and modeling! Spread the word! The salary is expected to increase dramatically soon :)
We offer a #postdoc position on network dynamics and modeling! Spread the word! The salary is expected to increase dramatically soon :)
Rachith Aiyappa & @yy shows social network models with a weighted belief network within each individual can unify simple and contagion dynamics
Very cool
#NetSciX2022 @NetSciX2022 https://t.co/AmCbop5wea
Very cool
#NetSciX2022 @NetSciX2022 https://t.co/AmCbop5wea
Twitter
Hiroki Sayama
Rachith Aiyappa & @yy shows social network models with a weighted belief network within each individual can unify simple and contagion dynamics Very cool #NetSciX2022 @NetSciX2022
Here’s a mathematical take on variational inference that might be interesting to statistical physics types: https://t.co/n7GZbGBYcX
Dalton A R Sakthivadivel
More About What Mean Field Theory Actually Means
Wherein I discuss at length what puts the ‘mean’ in mean field theory, and why we minimise free energy to calculate it. Some more general comments on free energy are given, because I can’t help myself. The proofs (about the effective field in the middle,…
Forwarded from انجمن علمی فیزیک شریف (Reza K1)
⭕️مقالهخوانی در حوزهی سیستمهای پیچیده⭕️
💡 موضوع ارائه:
Emergence of cooperation through chain-reaction death
🗣 ارائه دهنده: دکتر سامان مقیمی
📅 زمان ارائه: چهارشنبه ۲۷ بهمن ساعت ۱۲
🚪 محل برگزاری:
🔗 اتاق مجازی سمینارها و مقالهخوانیهای گروه فیزیک آماری
📌 پیوست یک: لینک گروه مقاله خوانی سیستم های پیچیده
📌 پیوست دو: لینک مقاله
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#مقالهخوانی_سیستمهایپیچیده
💢#دکتر_مقیمی
💡 موضوع ارائه:
Emergence of cooperation through chain-reaction death
🗣 ارائه دهنده: دکتر سامان مقیمی
📅 زمان ارائه: چهارشنبه ۲۷ بهمن ساعت ۱۲
🚪 محل برگزاری:
🔗 اتاق مجازی سمینارها و مقالهخوانیهای گروه فیزیک آماری
📌 پیوست یک: لینک گروه مقاله خوانی سیستم های پیچیده
📌 پیوست دو: لینک مقاله
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#مقالهخوانی_سیستمهایپیچیده
💢#دکتر_مقیمی
Comment: Machine learning as a tool in theoretical science. Michael R. Douglas discusses recent advances and ponders on the impact of ML methods relying on synthetic data in mathematics and theoretical physics
https://t.co/T55fcxPc7C
https://t.co/T55fcxPc7C
Nature
Machine learning as a tool in theoretical science
Nature Reviews Physics - Machine learning methods relying on synthetic data are starting to be used in mathematics and theoretical physics. Michael R. Douglas discusses recent advances and ponders...
Forwarded from Sitpor.org سیتپـــــور
فردا ساعت ۸ شب در صفحه اینستاگرام انجمن علمی فیزیک دانشگاه تبریز یا صفحه سیتپـــــور میتونید برنامه زنده ما در مورد علم شبکه رو دنبال کنید.
توی این برنامه دوست داریم به پرسشهای شما پیرامون این شاخه از علم پاسخ بدیم. برای همین هر سوالی که به نظرتون میرسه رو میتونید موقع پخش زنده بپرسین!
🔴 instagram.com/sitpor_media
🔴 instagram.com/physics__tabriz
برای آشنایی بیشتر با سیستمهای پیچیده به اینجا سر بزنید و برای آشنایی بیشتر با علم شبکه این ویدیو رو میتونید ببینید.
-----------------------------------------------
@sitpor | sitpor.org
@anjoman_physics_tabriz_uni
#سیتپـــــور به خاطر روایتگری در علم
توی این برنامه دوست داریم به پرسشهای شما پیرامون این شاخه از علم پاسخ بدیم. برای همین هر سوالی که به نظرتون میرسه رو میتونید موقع پخش زنده بپرسین!
🔴 instagram.com/sitpor_media
🔴 instagram.com/physics__tabriz
برای آشنایی بیشتر با سیستمهای پیچیده به اینجا سر بزنید و برای آشنایی بیشتر با علم شبکه این ویدیو رو میتونید ببینید.
-----------------------------------------------
@sitpor | sitpor.org
@anjoman_physics_tabriz_uni
#سیتپـــــور به خاطر روایتگری در علم
👍1
According to a new study on memory involving a map of the brain’s responses to linguistic information, memories aren’t exact copies of past perceptions. In reality, they are much more similar to a semantic reconstruction of the experience. https://t.co/GD14oWU6BC #QuantaMagazine
Research on spreading phenomena, resilience and modularity in probabilistic graphs applied to disaster science.
#PhD position, call: https://t.co/cTy7yxa0hS (Project 5)]
#PhD position, call: https://t.co/cTy7yxa0hS (Project 5)]
Forwarded from انجمن علمی فیزیک شریف (Ali Ekramian)
⭕️ سمینارهای فیزیک آماری ⭕️
💡 موضوع ارائه: مدلسازی مداخلههای دارویی و غیردارویی برای کنترل همهگیریها
🗣 ارائه دهنده: عباس کریمی ریزی (دانشگاه آلتو فنلاند)
📅 زمان ارائه: یکشنبه ۱ اسفند ساعت ۱۵:۰۰
🚪 محل برگزاری:
🔗 اتاق مجازی گروه فیزیک آماری
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#سمینار_فیزیک_آماری
💢#دکتر_مقیمی #دکتر_قنبرنژاد #دکتر_روحانی
🆔 @anjoman_elmi_phys_sut
💡 موضوع ارائه: مدلسازی مداخلههای دارویی و غیردارویی برای کنترل همهگیریها
🗣 ارائه دهنده: عباس کریمی ریزی (دانشگاه آلتو فنلاند)
📅 زمان ارائه: یکشنبه ۱ اسفند ساعت ۱۵:۰۰
🚪 محل برگزاری:
🔗 اتاق مجازی گروه فیزیک آماری
💢#اطلاع_رسانی_سمینارهای_دانشکده
💢#سمینار_فیزیک_آماری
💢#دکتر_مقیمی #دکتر_قنبرنژاد #دکتر_روحانی
🆔 @anjoman_elmi_phys_sut
👍1
"Michael Fisher 1931–2021" (by Daniel Garisto_: https://t.co/b7vHgfsnsP
"Michael Fisher, a statistical physicist who excavated the secrets underlying critical phenomena across physics, chemistry, and biophysics, died November 26, 2021 at 90."
"Michael Fisher, a statistical physicist who excavated the secrets underlying critical phenomena across physics, chemistry, and biophysics, died November 26, 2021 at 90."
aps.org
Michael Fisher 1931-2021
The statistical physicist and APS Fellow is remembered for his insights into critical phenomena as well as the rigor and intensity he applied to his professional and personal endeavors.
👍1