Пять мегатрендов будущего
✨Аналитический центр ВЦИОМ представил обзор ключевых глобальных трендов по итогам симпозиума «Создавая будущее». Эксперты выделили пять направлений, которые определят развитие технологий, экономики и общества в ближайшие десятилетия.
✅Первым мегатрендом названа «цивилизация на орбите». Космос перестает быть исключительно научной сферой и превращается в пространство экономической и политической конкуренции. Речь идет о развитии орбитальной инфраструктуры, хранении и обработке данных в космосе, а также о формировании новой космической экономики.
✅Вторым направлением стала демократизация и политизация искусственного интеллекта. ИИ все активнее влияет на экономику, безопасность и общественные процессы, превращаясь в объект глобальной конкуренции.
✅Третий мегатренд связан с гонкой за квантовое превосходство. Наличие научных школ и заделов в этой сфере позволяет России участвовать в формировании новой технологической архитектуры.
✅Четвертым направлением названа биоинженерия человека. Речь идет о переходе от лечения заболеваний к управлению здоровьем и биологическими возможностями человека. Этот процесс затрагивает не только медицину, но и вопросы этики, социальной ответственности и национальной идентичности.
✅Пятым мегатрендом стал ресурсный суверенитет. Доступ к критически важным ресурсам и технологиям их переработки становится ключевым фактором устойчивого развития.
✨Россия может сыграть заметную роль в формировании новых моделей международного сотрудничества, сочетая технологический суверенитет с участием в глобальных проектах.
✨Аналитический центр ВЦИОМ представил обзор ключевых глобальных трендов по итогам симпозиума «Создавая будущее». Эксперты выделили пять направлений, которые определят развитие технологий, экономики и общества в ближайшие десятилетия.
✅Первым мегатрендом названа «цивилизация на орбите». Космос перестает быть исключительно научной сферой и превращается в пространство экономической и политической конкуренции. Речь идет о развитии орбитальной инфраструктуры, хранении и обработке данных в космосе, а также о формировании новой космической экономики.
✅Вторым направлением стала демократизация и политизация искусственного интеллекта. ИИ все активнее влияет на экономику, безопасность и общественные процессы, превращаясь в объект глобальной конкуренции.
✅Третий мегатренд связан с гонкой за квантовое превосходство. Наличие научных школ и заделов в этой сфере позволяет России участвовать в формировании новой технологической архитектуры.
✅Четвертым направлением названа биоинженерия человека. Речь идет о переходе от лечения заболеваний к управлению здоровьем и биологическими возможностями человека. Этот процесс затрагивает не только медицину, но и вопросы этики, социальной ответственности и национальной идентичности.
✅Пятым мегатрендом стал ресурсный суверенитет. Доступ к критически важным ресурсам и технологиям их переработки становится ключевым фактором устойчивого развития.
✨Россия может сыграть заметную роль в формировании новых моделей международного сотрудничества, сочетая технологический суверенитет с участием в глобальных проектах.
👍11🤔4❤🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Доброе воскресное утро!
❄️❄️❄️В Москве столько снега, что можно, как эти милые лисички, понежиться в белоснежных сугробах❄️❄️❄️.
Здорово, правда?
❄️❄️❄️В Москве столько снега, что можно, как эти милые лисички, понежиться в белоснежных сугробах❄️❄️❄️.
Здорово, правда?
🥰14❤7😁3
Гибкие сенсоры для протезов нового поколения
✨👨🎓Российские ученые разработали гибкий многофункциональный сенсор на основе биосовместимых материалов. Устройство способно независимо и с высокой точностью отслеживать два ключевых параметра — давление и температуру, что открывает новые возможности для создания продвинутых протезов, носимой электроники и систем медицинского мониторинга.
✅Гибкие сенсоры — это электронные устройства, сохраняющие функциональность при деформации. Они способны измерять различные физические показатели: давление, температуру, влажность и другие.
🚩До сих пор большинство гибких сенсоров могли измерять только один параметр — либо давление, либо температуру.
В новом исследовании ученые предложили экологичный и простой метод синтеза, позволяющий создавать гибкие многофункциональные сенсоры площадью до 40 квадратных сантиметров.
👨🎓Коллектив ученых из Алферовского университета, МФТИ, Санкт-Петербургского политехнического университета Петра Великого, Сколтеха и СПбГУ разработал прототипы сенсоров, ключевым элементом которых являются вертикальные нитевидные нанокристаллы оксида цинка (ZnO), выращенные на кремниевой подложке. Эти кристаллы обладают не только полупроводниковыми, но и пьезоэлектрическими свойствами.
✅Основные области применения
📍«Электронная кожа» для адаптивных биопротезов, обеспечивающая обратную тактильную связь.
📍Имплантируемые медицинские сенсоры для непрерывного мониторинга жизненных показателей.
📍Носимая диагностическая электроника нового поколения.
📍Чувствительные элементы для робототехники, требующие точного тактильного восприятия.
📌Работа представляет собой существенный шаг в развитии гибкой и биосовместимой электроники. Простота и масштабируемость предложенного метода синтеза создают предпосылки для быстрого перехода от лабораторных прототипов к коммерческому использованию технологии.
✨👨🎓Российские ученые разработали гибкий многофункциональный сенсор на основе биосовместимых материалов. Устройство способно независимо и с высокой точностью отслеживать два ключевых параметра — давление и температуру, что открывает новые возможности для создания продвинутых протезов, носимой электроники и систем медицинского мониторинга.
✅Гибкие сенсоры — это электронные устройства, сохраняющие функциональность при деформации. Они способны измерять различные физические показатели: давление, температуру, влажность и другие.
🚩До сих пор большинство гибких сенсоров могли измерять только один параметр — либо давление, либо температуру.
В новом исследовании ученые предложили экологичный и простой метод синтеза, позволяющий создавать гибкие многофункциональные сенсоры площадью до 40 квадратных сантиметров.
👨🎓Коллектив ученых из Алферовского университета, МФТИ, Санкт-Петербургского политехнического университета Петра Великого, Сколтеха и СПбГУ разработал прототипы сенсоров, ключевым элементом которых являются вертикальные нитевидные нанокристаллы оксида цинка (ZnO), выращенные на кремниевой подложке. Эти кристаллы обладают не только полупроводниковыми, но и пьезоэлектрическими свойствами.
✅Основные области применения
📍«Электронная кожа» для адаптивных биопротезов, обеспечивающая обратную тактильную связь.
📍Имплантируемые медицинские сенсоры для непрерывного мониторинга жизненных показателей.
📍Носимая диагностическая электроника нового поколения.
📍Чувствительные элементы для робототехники, требующие точного тактильного восприятия.
📌Работа представляет собой существенный шаг в развитии гибкой и биосовместимой электроники. Простота и масштабируемость предложенного метода синтеза создают предпосылки для быстрого перехода от лабораторных прототипов к коммерческому использованию технологии.
👍11🔥2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
Доброе утро!
Начинаем путешествие в рабочую неделю, так же как эти отважные полярные исследователи!
Хрошего настроения!
Начинаем путешествие в рабочую неделю, так же как эти отважные полярные исследователи!
Хрошего настроения!
❤6🥰4👍3😍1
Литий VS газировка
👨🎓Исследователи из Китайской академии наук и Пекинского технологического института разработали инновационный метод извлечения лития из отработанных литий-ионных аккумуляторов, который является более безопасным и экологичным, чем существующие аналоги, предложив использовать для этого смесь углекислого газа (CO₂) и воды.
📍Процесс, описанный как «три в одном», позволяет восстановить более 95% лития, что сопоставимо с результатами традиционных методов, при которых применяются агрессивные кислоты и химикаты.
📌CO₂, растворенный в воде, образует слабую угольную кислоту, похожую по действию на газированную воду, но этого уже достаточно для эффективного извлечения лития из катода батареи.
⚡Сам процесс проводится при комнатной температуре и нормальном давлении без применения опасных химических реагентов.
Важной частью технологии является также утилизация других ценных металлов, таких как кобальт, никель и марганец, которые содержатся в катодах, — они не отправляются в отходы, а преобразуются в полезные катализаторы для энергетических и химических реакций — процесс, называемый вторичным использованием более высокого уровня.
♻️Дополнительным экологическим преимуществом метода является связывание углекислого газа: часть CO₂ в ходе процесса химически фиксируется в твердых побочных продуктах, что означает его захват, а не выброс в атмосферу.
✅Разработка имеет критическую важность в контексте растущего объема отходов, так как, по оценкам, к 2050 году в мире может образоваться около 381 миллиона метрических тонн отработанных литиевых батарей.
👨🎓Исследователи из Китайской академии наук и Пекинского технологического института разработали инновационный метод извлечения лития из отработанных литий-ионных аккумуляторов, который является более безопасным и экологичным, чем существующие аналоги, предложив использовать для этого смесь углекислого газа (CO₂) и воды.
📍Процесс, описанный как «три в одном», позволяет восстановить более 95% лития, что сопоставимо с результатами традиционных методов, при которых применяются агрессивные кислоты и химикаты.
📌CO₂, растворенный в воде, образует слабую угольную кислоту, похожую по действию на газированную воду, но этого уже достаточно для эффективного извлечения лития из катода батареи.
⚡Сам процесс проводится при комнатной температуре и нормальном давлении без применения опасных химических реагентов.
Важной частью технологии является также утилизация других ценных металлов, таких как кобальт, никель и марганец, которые содержатся в катодах, — они не отправляются в отходы, а преобразуются в полезные катализаторы для энергетических и химических реакций — процесс, называемый вторичным использованием более высокого уровня.
♻️Дополнительным экологическим преимуществом метода является связывание углекислого газа: часть CO₂ в ходе процесса химически фиксируется в твердых побочных продуктах, что означает его захват, а не выброс в атмосферу.
✅Разработка имеет критическую важность в контексте растущего объема отходов, так как, по оценкам, к 2050 году в мире может образоваться около 381 миллиона метрических тонн отработанных литиевых батарей.
👍14❤6🤔4
Ароматы для лечения диабета — реальность?
👨🎓✨Новосибирские ученые синтезировали и исследовали новый класс двойных активаторов рецепторов, регулирующих ключевые метаболические процессы.
🌲🌳🌿Основой для синтеза послужили монотерпеноиды — соединения, выделяемые из эфирных масел растений, а также из хвои, смол и коры ряда деревьев и трав.
✅Ключевые результаты исследования показали многостороннюю терапевтическую активность новых соединений. Было подтверждено их выраженное гипогликемическое действие, при этом производные миртенола, нерола и куминового спирта, наиболее эффективные из них, демонстрировали эффект, сохранявшийся даже после прекращения введения, что указывает на кумулятивный характер оказываемого действия. Кроме того, ряд соединений значимо улучшал чувствительность периферических тканей к инсулину — ключевой маркер активации PPARγ. Также наблюдалось снижение массы тела и жировой ткани, а также уровня общего холестерина и триглицеридов в плазме, что характерно для активации PPARα.
✨Важным результатом стала демонстрация органо-протекторных свойств: введение веществ приводило к существенному уменьшению жировой дистрофии печени, улучшению состояния бурой жировой ткани и ослаблению дистрофических изменений в почках.
📍Полученные соединения демонстрируют выраженную сахароснижающую и холестеринснижающую активность, улучшают чувствительность тканей к инсулину и корректируют патологические изменения, характерные для метаболического синдрома и сахарного диабета 2-го типа, что делает их перспективными для терапии этих заболеваний.
👨🎓✨Новосибирские ученые синтезировали и исследовали новый класс двойных активаторов рецепторов, регулирующих ключевые метаболические процессы.
🌲🌳🌿Основой для синтеза послужили монотерпеноиды — соединения, выделяемые из эфирных масел растений, а также из хвои, смол и коры ряда деревьев и трав.
✅Ключевые результаты исследования показали многостороннюю терапевтическую активность новых соединений. Было подтверждено их выраженное гипогликемическое действие, при этом производные миртенола, нерола и куминового спирта, наиболее эффективные из них, демонстрировали эффект, сохранявшийся даже после прекращения введения, что указывает на кумулятивный характер оказываемого действия. Кроме того, ряд соединений значимо улучшал чувствительность периферических тканей к инсулину — ключевой маркер активации PPARγ. Также наблюдалось снижение массы тела и жировой ткани, а также уровня общего холестерина и триглицеридов в плазме, что характерно для активации PPARα.
✨Важным результатом стала демонстрация органо-протекторных свойств: введение веществ приводило к существенному уменьшению жировой дистрофии печени, улучшению состояния бурой жировой ткани и ослаблению дистрофических изменений в почках.
📍Полученные соединения демонстрируют выраженную сахароснижающую и холестеринснижающую активность, улучшают чувствительность тканей к инсулину и корректируют патологические изменения, характерные для метаболического синдрома и сахарного диабета 2-го типа, что делает их перспективными для терапии этих заболеваний.
🔥7👍6❤1🤔1
140 лет − рецепт Coca-Cola раскрыт
✅Ученый и автор YouTube-канала Зак Армстронг утверждает, что раскрыл секретный рецепт напитка Coca-Cola, которому уже около 140 лет, пишет Daily Mail.
📌С помощью масс-спектрометрии, методу, за счет которого получается создать «отпечаток» состава, он смог сделать химически точную копию напитка.
✨Рецепт мистера Армстронга включал в себя лимонное масло, масло лайма, чайного дерева, корицы, мускатного ореха, апельсина, кориандра и натуральный ароматизатор, напоминающий сосну.
📍Для получения конечного продукта танины и вода смешиваются с карамельными красителями, уксусом, глицерином для густоты, кофеином, сахаром, экстрактом ванили и фосфорной кислотой.
📍Затем в литр водного раствора добавляется всего 20 миллилитров сильно разбавленной смеси эфирных масел, все это нагревается и смешивается с газированной водой.
📍Смесь необходимо было выдержать не менее суток и разбавить пищевым спиртом.
💥Но Зак Армстронг был не полностью доволен вкусом своего напитка. Оказалось, что там не хватает экстракта листьев коки, которые, по сути, являются разновидностью чая, богатым танинами.
Получается практически неотличимо от оригинала!
✅Ученый и автор YouTube-канала Зак Армстронг утверждает, что раскрыл секретный рецепт напитка Coca-Cola, которому уже около 140 лет, пишет Daily Mail.
📌С помощью масс-спектрометрии, методу, за счет которого получается создать «отпечаток» состава, он смог сделать химически точную копию напитка.
✨Рецепт мистера Армстронга включал в себя лимонное масло, масло лайма, чайного дерева, корицы, мускатного ореха, апельсина, кориандра и натуральный ароматизатор, напоминающий сосну.
📍Для получения конечного продукта танины и вода смешиваются с карамельными красителями, уксусом, глицерином для густоты, кофеином, сахаром, экстрактом ванили и фосфорной кислотой.
📍Затем в литр водного раствора добавляется всего 20 миллилитров сильно разбавленной смеси эфирных масел, все это нагревается и смешивается с газированной водой.
📍Смесь необходимо было выдержать не менее суток и разбавить пищевым спиртом.
💥Но Зак Армстронг был не полностью доволен вкусом своего напитка. Оказалось, что там не хватает экстракта листьев коки, которые, по сути, являются разновидностью чая, богатым танинами.
Получается практически неотличимо от оригинала!
😁14👍5🔥3🤣1
Удивительные материалы родом из СССР
В Советском Союзе велись постоянные поиски новых материалов, в том числе из-за международной изоляции страны в разные периоды истории.
Некоторые поиски приводили к очень успешным результатам.
✅Карболит, текстолит и гетинакс
В 1910 году был синтезирован полимер с названием бакелит − один из первых, по сути, искусственных полимеров, выпускавшихся в промышленном объеме.
📍В 1914 году в лаборатории на шелкоткацкой фабрике в деревне Дубровка рядом с городом Орехово-Зуево группа химиков синтезировала карболит, русский аналог бакелита, который получил свое название карболит от карболовой кислоты, второго названия фенола.
Когда им начали пропитывать другие материалы для получения тонких и прочных листов, появился текстолит.
📍Текстолит − слоистый материал на тканевой основе (стеклянной, хлопчатобумажной, асбестовой, синтетической) с пропиткой из синтетических смол.
Из текстолита изготавливают специальные втулки, стержни, шестеренки, планки, листы. Текстолит на основе стеклоткани с формальдегидной смоляной пропиткой (стеклотекстолит) используется для изготовления печатных плат для электроники.
📍Гетинакс – тоже электроизоляционный слоистый прессованный материал, но имеющий бумажную основу. Пропитан фенолформальдегидной или эпоксидной смолами. Используется как основа печатных плат.
✅Дельта-древесина
Другие названия: древесный слоистый пластик, балинит, лигнофоль, ДСП-10. Это древеснослоистый пластик на основе формальдегидной смолы, армированной древесными волокнами. Получался прессованием древесного шпона (обычно березового) путем пропитки его формальдегидной смолой.
📍Представляет собот композитный материал, разработанный в 1932 году Всесоюзным научно-исследовательским институтом авиационных материалов (ВИАМ). Потом технология производства была улучшена специалистами завода «Карболит».
Применялся в самолетостроении.
✅Силикальцит
📍Силикальцит, или силикат карбоната кальция, кремниевый кальцит − строительный материал, который еще называли бесцементным бетоном. Химическая формула получаемого минерала CaCO3*SiO2. Изготавливается из смеси, состоящей из гашеной извести (10%) и измельченного специальным образом песка (90%). Затем эта смесь при высокой температуре и давлении кристаллизовывалась. По прочностным показателям силикальцит не уступал обычному бетону.
📌Изобрел этот способ «подружить» карбонат кальция и кремний инженер-технолог Йоханнес Александрович Хинт из Эстонской ССР, он описал метод в 1948 году.
⚡Технология силикальцита была даже продана во многие страны, в частности, ее получили Италия, Япония, позже Германия, Австрия и США.
✅Сплав «Победит»
📍Это обобщенное название, данное в СССР твердым сплавам под маркировками ВК4, ВК6, ВК8, ВК10, Т15К6. Этот высокопрочный сплав был получен путем спекания 90% карбида вольфрама с 10% кобальта и небольшого количества углерода, что позволило создать материал с высокой твердостью (80−90 по шкале Роквелла) и прочностью, устойчивый к износу и коррозии.
📌 Сплав разработан и получен в 1929 году в СССР в Центральном научно-исследовательском институте тяжелого машиностроения.
В Советском Союзе велись постоянные поиски новых материалов, в том числе из-за международной изоляции страны в разные периоды истории.
Некоторые поиски приводили к очень успешным результатам.
✅Карболит, текстолит и гетинакс
В 1910 году был синтезирован полимер с названием бакелит − один из первых, по сути, искусственных полимеров, выпускавшихся в промышленном объеме.
📍В 1914 году в лаборатории на шелкоткацкой фабрике в деревне Дубровка рядом с городом Орехово-Зуево группа химиков синтезировала карболит, русский аналог бакелита, который получил свое название карболит от карболовой кислоты, второго названия фенола.
Когда им начали пропитывать другие материалы для получения тонких и прочных листов, появился текстолит.
📍Текстолит − слоистый материал на тканевой основе (стеклянной, хлопчатобумажной, асбестовой, синтетической) с пропиткой из синтетических смол.
Из текстолита изготавливают специальные втулки, стержни, шестеренки, планки, листы. Текстолит на основе стеклоткани с формальдегидной смоляной пропиткой (стеклотекстолит) используется для изготовления печатных плат для электроники.
📍Гетинакс – тоже электроизоляционный слоистый прессованный материал, но имеющий бумажную основу. Пропитан фенолформальдегидной или эпоксидной смолами. Используется как основа печатных плат.
✅Дельта-древесина
Другие названия: древесный слоистый пластик, балинит, лигнофоль, ДСП-10. Это древеснослоистый пластик на основе формальдегидной смолы, армированной древесными волокнами. Получался прессованием древесного шпона (обычно березового) путем пропитки его формальдегидной смолой.
📍Представляет собот композитный материал, разработанный в 1932 году Всесоюзным научно-исследовательским институтом авиационных материалов (ВИАМ). Потом технология производства была улучшена специалистами завода «Карболит».
Применялся в самолетостроении.
✅Силикальцит
📍Силикальцит, или силикат карбоната кальция, кремниевый кальцит − строительный материал, который еще называли бесцементным бетоном. Химическая формула получаемого минерала CaCO3*SiO2. Изготавливается из смеси, состоящей из гашеной извести (10%) и измельченного специальным образом песка (90%). Затем эта смесь при высокой температуре и давлении кристаллизовывалась. По прочностным показателям силикальцит не уступал обычному бетону.
📌Изобрел этот способ «подружить» карбонат кальция и кремний инженер-технолог Йоханнес Александрович Хинт из Эстонской ССР, он описал метод в 1948 году.
⚡Технология силикальцита была даже продана во многие страны, в частности, ее получили Италия, Япония, позже Германия, Австрия и США.
✅Сплав «Победит»
📍Это обобщенное название, данное в СССР твердым сплавам под маркировками ВК4, ВК6, ВК8, ВК10, Т15К6. Этот высокопрочный сплав был получен путем спекания 90% карбида вольфрама с 10% кобальта и небольшого количества углерода, что позволило создать материал с высокой твердостью (80−90 по шкале Роквелла) и прочностью, устойчивый к износу и коррозии.
📌 Сплав разработан и получен в 1929 году в СССР в Центральном научно-исследовательском институте тяжелого машиностроения.
👍13❤8🤔3⚡2🎉1
Синтезированный в России армбрустерит поглощает радиоактивный цезий...
☢️Современная атомная промышленность все активнее сталкивается с проблемой жидких радиоактивных отходов, прежде всего содержащих изотопы цезия — одного из наиболее опасных продуктов ядерных технологий.
✅Создание надежного и селективного сорбента, способного извлекать именно Cs+, сегодня имеет огромное значение для экологической безопасности. И неожиданным кандидатом на эту роль оказался редчайший минерал Кольского региона — армбрустерит.
👨🎓❗Ученые Кольского научного центра Российской академии наук (КНЦ РАН) установили, что найденный в Мурманской области минерал армбрустерит может стать основой сорбента для улавливания радиоактивного цезия, присутствующего в жидких ядерных отходах. Авторы изучили свойства редкого минерала и синтезировали его искусственный аналог.
⚡Химическая формула армбрустерита — K₅Na₆Mn³⁺Mn²⁺₁₄[Si₉O₂₂]₄(OH)₁₀ ∙ 4H₂O. Его кристаллическая структура состоит из гетерополиэдрических пакетов, включающих два тетраэдрических слоя кремнекислородных групп [Si₉O₂₂]⁸⁻, промежуточный слой октаэдров MnO₆ и NaO₆, внекаркасные катионы K⁺ и молекулы воды, расположенные в двумерной сети каналов.
📌Впервые минерал был обнаружен в 2005 году в пегматите на горе Кукисвумчорр в Хибинах. Геологи КНЦ РАН назвали его в честь швейцарского кристаллографа Томаса Армбрустера.
❗❗Проблема заключается в том, что объемы природного армбрустерита настолько малы, что о промышленном применении говорить не приходится. Поэтому ученые КНЦ РАН поставили перед собой задачу создать синтетический аналог минерала со всеми необходимыми свойствами.
📍Чистый армбрустерит получить пока не удалось, но были синтезированы другие марганцево-силикатные фазы, а в одном случае — смесь серандита и армбрустерита.
✅В планах — разработать на основе армбрустерита или его аналога новый селективный сорбент для очистки радиоактивных отходов.
☢️Современная атомная промышленность все активнее сталкивается с проблемой жидких радиоактивных отходов, прежде всего содержащих изотопы цезия — одного из наиболее опасных продуктов ядерных технологий.
✅Создание надежного и селективного сорбента, способного извлекать именно Cs+, сегодня имеет огромное значение для экологической безопасности. И неожиданным кандидатом на эту роль оказался редчайший минерал Кольского региона — армбрустерит.
👨🎓❗Ученые Кольского научного центра Российской академии наук (КНЦ РАН) установили, что найденный в Мурманской области минерал армбрустерит может стать основой сорбента для улавливания радиоактивного цезия, присутствующего в жидких ядерных отходах. Авторы изучили свойства редкого минерала и синтезировали его искусственный аналог.
⚡Химическая формула армбрустерита — K₅Na₆Mn³⁺Mn²⁺₁₄[Si₉O₂₂]₄(OH)₁₀ ∙ 4H₂O. Его кристаллическая структура состоит из гетерополиэдрических пакетов, включающих два тетраэдрических слоя кремнекислородных групп [Si₉O₂₂]⁸⁻, промежуточный слой октаэдров MnO₆ и NaO₆, внекаркасные катионы K⁺ и молекулы воды, расположенные в двумерной сети каналов.
📌Впервые минерал был обнаружен в 2005 году в пегматите на горе Кукисвумчорр в Хибинах. Геологи КНЦ РАН назвали его в честь швейцарского кристаллографа Томаса Армбрустера.
❗❗Проблема заключается в том, что объемы природного армбрустерита настолько малы, что о промышленном применении говорить не приходится. Поэтому ученые КНЦ РАН поставили перед собой задачу создать синтетический аналог минерала со всеми необходимыми свойствами.
📍Чистый армбрустерит получить пока не удалось, но были синтезированы другие марганцево-силикатные фазы, а в одном случае — смесь серандита и армбрустерита.
✅В планах — разработать на основе армбрустерита или его аналога новый селективный сорбент для очистки радиоактивных отходов.
🔥15👍7❤4
This media is not supported in your browser
VIEW IN TELEGRAM
Красивое!
✅Карбонат кальция (углекислый кальций, кальцит, известняк, мел, мрамор) — неорганическое химическое соединение, соль угольной кислоты и кальция. Химическая формула CaCO3.
💥В природе встречаются три кристаллические модификации карбоната кальция (минералы с одинаковым химическим составом, но с различной кристаллической структурой).
Кальцит — наиболее устойчивая и распространенная модификация.
Арагонит — вторая по устойчивости и распространенности модификация, в основном формируется в раковинах моллюсков и скелетах кораллов.
Фатерит (ватерит) — наименее стабильная разновидность, быстро превращается в воде либо в кальцит, либо в арагонит. В природе встречается относительно редко, когда его кристаллическая структура стабилизирована примесями.
Карбонат кальция — один из самых разнообразных минералов в мире.
✅Карбонат кальция (углекислый кальций, кальцит, известняк, мел, мрамор) — неорганическое химическое соединение, соль угольной кислоты и кальция. Химическая формула CaCO3.
💥В природе встречаются три кристаллические модификации карбоната кальция (минералы с одинаковым химическим составом, но с различной кристаллической структурой).
Кальцит — наиболее устойчивая и распространенная модификация.
Арагонит — вторая по устойчивости и распространенности модификация, в основном формируется в раковинах моллюсков и скелетах кораллов.
Фатерит (ватерит) — наименее стабильная разновидность, быстро превращается в воде либо в кальцит, либо в арагонит. В природе встречается относительно редко, когда его кристаллическая структура стабилизирована примесями.
Карбонат кальция — один из самых разнообразных минералов в мире.
❤17🤔4🥰3
Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
Журнал Mendeleev Communications разместил в открытом доступе все выпуски за 2025 г.: https://m.mathnet.ru/php/archive.phtml?jrnid=mendc&wshow=contents&option_lang=rus
#инфраструктуранауки
#инфраструктуранауки
❤6✍3😱1🤓1