Data Analysis / Big Data
2.83K subscribers
567 photos
4 videos
2 files
2.85K links
Лучшие посты по анализу данных и работе с Big Data на русском и английском языке

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels
Download Telegram
Яндекс Дзен или как он вдохнул новую жизнь в ВК

В 2022 году Дзен стал двигаться вместе с ВК, но что это означало под капотом?
Разберём внутрянку технологий рекомендаций Дзена и текущих продуктов ВК по докладам Дмитрия Погорелова до 2024 и самого свежего 2025 с PML.

Узнаем самые первые архитектуры Дзена, что начали делать с увеличением нагрузки и хотелок МЛщиков. Как пришлось выкручиваться, когда столкнулись с объемами ВК.

Спойлер: нам пригодится шардирование


Читать: https://habr.com/ru/articles/964384/

#ru

@big_data_analysis | Другие наши каналы
AI-драгдизайн: первая молекула прошла Фазу II

AI-драгдизайн: первая молекула прошла Фазу II. Разбираем, как GNN, AlphaFold 3 и $2.23 млрд на провал меняют фармакологию


Читать: https://habr.com/ru/articles/964554/

#ru

@big_data_analysis | Другие наши каналы
Не только трансформеры: за пределами стандартных архитектур LLM

Привет! Это перевод очень крутой и захватывающей статьи, в которой автор рассматривает альтернативные архитектуры LLM: гибриды с линейным вниманием, диффузионные LLM, модели мира и малые рекурсивные трансформеры.

Каждая архитектура достаточно детально и глубоко разобрана, поэтому если вы интересуетесь LLMками, то будет очень интересно.


Читать: https://habr.com/ru/articles/964658/

#ru

@big_data_analysis | Другие наши каналы
Как работает цензура на государственном уровне? Разбираем на примере слитого китайского фаерволла. Часть 1

Мы скачали 500 ГБ утечку из Великого Китайского Файрвола чтобы вам не пришлось и решили их изучить. Разбираемся, как он работает, кого обслуживает и как его обходят.


Читать: https://habr.com/ru/companies/femida_search/articles/964664/

#ru

@big_data_analysis | Другие наши каналы
Что такое маршрутизатор LLM?

Большие языковые модели (LLM) стали основой современных ИИ-продуктов, обеспечивая работу всего - от чат-ботов и виртуальных ассистентов до исследовательских инструментов и корпоративных решений. Но LLM различаются по сильным сторонам, ограничениям и стоимости: одни лучше в рассуждениях, другие - в креативе, коде или работе со структурированными запросами. Здесь и нужен маршрутизатор LLM.

Маршрутизатор LLM работает как «умный диспетчер трафика»: он автоматически направляет промпты в наиболее подходящую модель под конкретную задачу. Вместо одной универсальной модели бизнес и разработчики повышают точность, скорость и снижают затраты, маршрутизируя запросы в реальном времени. По мере роста применения ИИ маршрутизация LLM становится обязательным слоем для масштабируемых, надёжных и эффективных систем.


Читать: https://habr.com/ru/articles/964832/

#ru

@big_data_analysis | Другие наши каналы
Substrait — lingua franca для баз данных

Substrait — это промежуточный формат (IR) для обмена планами запросов между системами. Он снимает боль диалектов SQL, позволяет делать pushdown в разные бэкенды и избавляет от повторного парсинга/оптимизации федеративных системах и позволяет относительно безболезненно заменять один бэкенд другим. Ниже - зачем он нужен, как устроен и кто поддерживает.
Узнать про Substrait

Читать: https://habr.com/ru/companies/cedrusdata/articles/964800/

#ru

@big_data_analysis | Другие наши каналы
Как мы починили процессы в ML-команде и сократили T2M на 20%

Привет, Хабр! Меня зовут Василий Сизов. По образованию я инженер-конструктор, а сейчас работаю тимлидом в ВТБ и занимаюсь машинным обучением в CRM и проектами с LLM.

В какой-то момент мне доверили кросс-функциональную команду — и тут пришлось разбираться не только в моделях, но и в процессах, которые обеспечивают их жизнеспособность. В этой статье расскажу, как мы пересобрали эти процессы и сократили Time to Market на 20%. Возможно, вы узнаете в этих историях свои задачи и вызовы – и найдете идеи, которые помогут их решить.


Читать: https://habr.com/ru/companies/vtb/articles/964954/

#ru

@big_data_analysis | Другие наши каналы
Что лучше — код или drag-and-drop в BI? Дайте и то, и другое

В последние годы анализ данных прошел путь от диаграмм в Excel до сложных интерактивных дашбордов, которые помогают принимать взвешенные решения. Одновременно с этим сформировалось устойчивое представление о дашборде как о наборе диаграмм, таблиц и фильтров, собранных в визуальном редакторе методом drag-and-drop. Этот подход действительно сделал аналитику доступной: он быстрый, понятный и не требует знаний в программировании.

Но! В нашей работе все чаще появляются нетривиальные задачи, поэтому помимо Self-Service мы, команда интерактивной аналитики Инновационного центра «Безопасный транспорт», находим новые способы реализации интересных проектов. В этой статье мы хотим поговорить о том, какую пользу приносит разработка в BI.


Читать: https://habr.com/ru/companies/visiology/articles/965324/

#ru

@big_data_analysis | Другие наши каналы
This media is not supported in your browser
VIEW IN TELEGRAM
Бро, ты можешь тут реализоваться и т.д.

Став частью ОТП Банка, именно ты сделаешь сильнее всю команду! Расти, учись и пробуй новое — это твой шанс создать что-то по-настоящему крутое.

Присоединяйся к ребятам и делись роликом с теми, кто тоже готов к переменам 🚀
3D-карта вместо инстинктов: как робот учится ползать и прыгать

В Гонконге разработали технологию для передвижения четвероногих роботов. Теперь они почти как настоящие животные способны автономно преодолевать экстремально сложные препятствия. Роботы находят обходные пути там, где кажется, что пройти невозможно. Как это стало возможно и какие возможности открывает новая технология?


Читать: https://habr.com/ru/companies/cloud4y/articles/965758/

#ru

@big_data_analysis | Другие наши каналы
Сверхбыстрые запросы: принципы Compaction при разделении хранения и вычислений в StarRocks и руководство по тюнингу

StarRocks при каждом импорте данных создаёт новую версию, что со временем приводит к росту числа мелких файлов и падению эффективности запросов. Фоновый процесс Compaction объединяет версии, устраняет дубликаты и сокращает количество I/O. В материале разобраны: архитектура Compaction в режиме разделения хранения и вычислений (FE — Scheduler, BE/CN — Executor), диспетчеризация по Partition и Tablet, критерии безопасной очистки данных, а также практики тюнинга. Показано, как смотреть Compaction Score на уровне Partition, отслеживать и отменять задачи, и какие параметры FE/BE/CN действительно влияют на производительность (compact_threads, lake_compaction_max_tasks и др.). Отдельно затронут мониторинг и алерты в Grafana/Prometheus. Текст ориентирован на инженеров DWH/OLAP и эксплуатацию высоконагруженных систем хранения данных.


Читать: https://habr.com/ru/articles/966322/

#ru

@big_data_analysis | Другие наши каналы
Как мы тестируем RT.Warehouse: тестовые сценарии, сбор и анализ метрик по результатам тестирования

Привет, Хабр! Меня зовут Ольга Проскурякова, я лид направления тестирования в компании TData. Эта статья - моя первая публикация на Хабре. Буда рада поделиться своим опытом.

Платформа, которую разрабатывает TData – это комплексное решение для работы с большими данными: сбор, управление, хранение, визуализация и анализ. В центре платформы – десяток ключевых продуктов. Все они проходят проверку нашей командой тестировщиков. Сегодня я расскажу о том, как мы тестируем один из них.

Для наглядности опишу предметную область тестирования. Это продукт RT.Warehouse - массивно-параллельная СУБД для построения хранилищ данных, разработанная на базе Greenplum.

RT.Warehouse обеспечивает высокую степень производительности и отказоустойчивости благодаря гибкости горизонтального масштабирования, использованию в ядре продвинутого оптимизатора запросов и адаптации архитектуры для хранения и обработки больших массивов данных.


Читать: https://habr.com/ru/companies/rostelecom/articles/966416/

#ru

@big_data_analysis | Другие наши каналы
👍1
Как создать динамическую сводную таблицу на Power BI Report Server

Всем привет! Меня зовут Максим Кушнер, и я занимаюсь BI-разработкой в команде HR-аналитики «Лемана Тех». Дашборды, которые создаёт и поддерживает наша команда, охватывают широкий круг HR-процессов компании, в т. ч. состояние и движение персонала, расходы на персонал, продуктивность, контроль использования рабочего времени, обучение, профессиональное развитие, вовлечённость, внутренние конкурсы, различные рейтинги и др. Пользователями дашбордов могут быть все 40 000+ сотрудников нашей компании – от топ-менеджмента до любого работника в магазине. Соответственно, количество различных срезов данных и бизнес-показателей в дашбордах может исчисляться десятками.

И очень часто наши коллеги говорят: «Ваш дашборд, конечно, классный, но нам хочется самим покрутить данные». Другими словами, пользователи хотят построить аналитику в нужных им разрезах и структуре, которые не предусмотрены разработчиком по умолчанию.

Если не пытаться решить эту боль пользователя, то он просто экспортирует сырые данные из дашборда в Excel, где использует инструмент сводных таблиц (pivot tables) для выстраивания аналитики в нужном ему виде. Но тогда встаёт вопрос: зачем нужен такой дашборд (и его разработчики), если пользователь использует его как перевалочный пункт, а основную ценность извлекает из другого инструмента?


Читать: https://habr.com/ru/companies/lemana_tech/articles/965670/

#ru

@big_data_analysis | Другие наши каналы