382K subscribers
4.43K photos
852 videos
17 files
4.88K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🔥 Бесплатная книга от инженера GoogleAgentic Design Patterns

400 страниц про всё, что нужно знать об агентных системах. Автор — senior engineer в Google, выложил драфт для открытого ревью.

📖 В книге:
- продвинутые техники промптинга
- паттерны для мульти-агентов
- использование инструментов и MCP
- практические примеры с кодом

По сути, это полный справочник по построению умных агентов. Must-read для разработчиков AI.

📚 Читать

@ai_machinelearning_big_data


#AI #Agents #Google #OpenSource #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11235🔥28😨4🤔3😁1
🚀 Google выпустила EmbeddingGemma: лёгкую open-source модель для текстовых эмбеддингов.

Модельку можно запускать прямо на телефоне или ноутбуке, без интернета и с сохранением приватности.

EmbeddingGemma - новый лидер среди открытых многоязычных моделей <500M на MTEB

🟢Что внутри:
308M параметров, но по качеству обгоняет все модели до 500M (по MTEB)
• Работает очень быстро: менее 15 мс на EdgeTPU (256 токенов)
• Понимает 100+ языков
• Размер эмбеддингов можно уменьшать (768 → 128) без потери качества
• Контекст до 2000 токенов
• Уже доступна в Sentence-Transformers, LangChain, llama.cpp, transformers.js, Weaviate и др.

🟠Blog: https://developers.googleblog.com/en/introducing-embeddinggemma/
🟠Models: https://huggingface.co/collections/google/embeddinggemma-68b9ae3a72a82f0562a80dc4

@ai_machinelearning_big_data

#AI #Google #Gemma #EmbeddingGemma #ML #DeepLearning #LLM #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍109🔥3230🥰2🤔2💘2
💰 Google TPUs - главный конкурент NVIDIA?

Аналитики считают: если бы Google выделила бизнес по TPU-чипам вместе с лабораторией DeepMind, то объединённая компания могла бы стоить около $900 млрд.

Пока этого не произойдёт, но сама цифра показывает масштаб.

📌 Что такое TPU и почему они важны
🟢Чипы, созданные специально для машинного обучения
🟢Их производительность — до 42,5 экзафлопс
🟢Сами чипы сопоставимы с NVIDIA по скорости и энергоэффективности
🟢 За полгода активность разработчиков в Google Cloud выросла на 96% , благодаря собственному железу

🔥 Новые поколения чипов
- 6-е поколение Trillium уже пользуется высоким спросом
- 7-е поколение Ironwood станет первым TPU, ориентированным на крупномасштабный inference — этап, когда модели реально используются после обучения

Anthropic и xAI активно рассматривают переход на TPU, так как улучшенная поддержка через JAX делает их использование на больших масштабах заметно проще.

Google уже заключила сделку с Fluidstack (Нью-Йорк) и ведёт переговоры с другими облачными провайдерами, которые раньше работали в основном с NVIDIA (например, Crusoe и **CoreWeave**).

В итоге Google выходит в прямую конкуренцию с NVIDIA — и впервые за долгое время у «зелёного гиганта» появился серьёзный соперник.

🟢Новость: marketwatch. com/story/google-may-be-sitting-on-a-900-billion-gem-that-could-disrupt-nvidias-dominance-20662ec6

@ai_machinelearning_big_data

#google #nvidia #tpu #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥1910🤔3💘1
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Google DeepMind показала, как роботы учатся работать вместе с помощью обучения с подкреплением.

Учёные из UCL, Google DeepMind и Intrinsic представили новый AI-алгоритм RoboBallet — систему, которая позволяет нескольким роботизированным манипуляторам работать синхронно и без столкновений в сложной производственной среде,.

🔹 В эксперименте участвовали 8 роботов, каждый из которых мог выполнять 40 разных задач в одном общем пространстве.
🔹 Роботы могли брать любую задачу в любом порядке — система сама решала, кому что поручить и как построить безопасные траектории.
🔹 Алгоритм обучался в симуляции, а затем сразу работал в новых условиях без дообучения (*zero-shot*).

Пока решение работает только для задач перемещения (reaching), без учёта порядка выполнения или разных типов роботов.

Однако архитектура гибкая — в будущем возможно добавление сложных задач, зависимостей и разнообразных роботов.

Один алгоритм смог координировать целую команду, делая роботов гибкими и слаженными даже там, где они раньше не работали.

🟢 Подробнее: https://www.science.org/doi/10.1126/scirobotics.ads1204

@ai_machinelearning_big_data

#google #robots #ai #rl
Please open Telegram to view this post
VIEW IN TELEGRAM
65👍40🔥21🥱3🤔2🗿1💘1
⚛️🔬🚀 PsiQuantum привлекла рекордные $1 млрд для строительства квантового компьютера с 1 млн кубитов к 2028 году — это крупнейший раунд финансирования в истории квантовых технологий.

📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.

💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.

Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.

⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ

🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры

🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.

🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a

#quantum #ai #nvidia #google #ibm #hardware #future
40👍23🔥8🤷‍♂5
Media is too big
VIEW IN TELEGRAM
🤖 Demis Hassabis (Google DeepMind) о будущем робототехники

⦿ Гуманойдные формы могут оказаться ключевыми для повседневного и персонального использования — там, где среда создана под людей.
А вот специализированные роботы будут незаменимы на производстве и в лабораториях.

⦿ В ближайшие пару лет нас ждёт «вау-момент» в робототехнике.
Но фундаментальные модели пока требуют доработки: надёжности и более глубокого понимания реального мира.

⦿ DeepMind работает сразу в двух направлениях:
- как с Android для роботов — универсальный слой ОС, совместимый с любым роботом;
- и с вертикальной интеграцией - разработка конкретных роботов «под ключ».

Идея проста: скоро роботы будут не только на заводах, но и рядом с нами — а управлять ими станет так же привычно, как смартфоном.

🟢Полное интервью: https://www.youtube.com/watch?v=Kr3Sh2PKA8Y

@ai_machinelearning_big_data


#DeepMind #Google #DemisHassabis #Robotics
Please open Telegram to view this post
VIEW IN TELEGRAM
1🤔90👍3419👀9🎉8🤬3🔥2👏2
🦾 Google представил Gemini Robotics-ER 1.5 - новую модель для роботов, которая умеет видеть, рассуждать, планировать и действовать в реальном мире.

Что она может:
- Понимать пространство и объекты вокруг.
- Разбивать задачу на шаги (например: «убери стол» → план действий).
- Подключать внешние инструменты - поиск, модели для анализа изображений и др.
- Балансировать скорость и точность: быстро реагировать или глубже анализировать.
- Работать безопаснее: учитывать вес предметов и физические ограничения.

Мир слишком сложен для роботов: окружение, сцены, объекты постоянно меняются.

Gemini Robotics-ER помогает роботам соединять понимание и действие.

📌 Пример: робот сортирует мусор.
Он узнаёт местные правила, распознаёт предметы, планирует действия и выполняет всё безопасно.

https://developers.googleblog.com/en/building-the-next-generation-of-physical-agents-with-gemini-robotics-er-15/

@ai_machinelearning_big_data


#Google #Gemini #Robotics #AI #PhysicalAgents
🔥6723👍23🤔5💘2
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ GenAI прямо на устройстве: Chrome, Chromebook Plus и Pixel Watch с LiteRT-LM

Google выпустили LiteRT-LM - фреймворк для запуска LLM прямо на устройстве (offline), с минимальной задержкой и без API-вызовов.


Если вы пилите приложения, это полезная штука, потому что:
- Работает на устройстве: нет задержек от удалённых серверов
- Нет расходов на API
- Дает доступ к Локальному GenAI

🔍 Основное
- LiteRT-LM уже используется внутри Gemini Nano / Gemma в Chrome, Chromebook Plus и Pixel Watch.
- Открытый C++ интерфейс (preview) для интеграции в кастомные решения.
- Архитектура: Engine + Session
  • Engine хранит базовую модель, ресурсы - общий для всех функций
  • Session - контекст для отдельных задач, с возможностью клонирования, копирования “по записи” (Copy-on-Write) и лёгких переключений
- Поддержка аппаратного ускорения (CPU / GPU / NPU) и кроссплатформенность (Android, Linux, macOS, Windows и др.)
- Для Pixel Watch используется минимальный “pipeline” - только необходимые компоненты - чтобы уложиться в ограничения памяти и размера бинарей

Google опенсорснули целый стек для запуска GenAI на устройствах:

- LiteRT быстрый «движок», который запускает отдельные AI-модели на устройстве.

- LiteRT-LM - интерфейс C++ для работы с LLM. Он объединяет сразу несколько инстурментов : кэширование промптов, хранение контекста, клонирование сессий и т.д.

- LLM Inference API - готовые интерфейсы для разработчиков (Kotlin, Swift, JS). Работают поверх LiteRT-LM, чтобы можно было легко встраивать GenAI в приложения.

🟠Подробнее: https://developers.googleblog.com/en/on-device-genai-in-chrome-chromebook-plus-and-pixel-watch-with-litert-lm/

@ai_machinelearning_big_data

#AI #Google #LiteRT #LiteRTLM #GenAI #EdgeAI #OnDeviceAI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9932🔥20💘4
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Google выпустили Jules Tools - новую консольную утилиту и API для управления своим AI-агентом прямо из терминала.

Jules - это ИИ, который умеет писать код, исправлять ошибки и создавать тесты для ваших проектов.

Он подключается к GitHub или другому репозиторию, анализирует кодовую базу и выполняет задачи, которые вы ему задаёте.

С помощью Jules Tools можно запускать и управлять этим агентом напрямую через терминал, без браузера.

Пример, вводите:
jules remote new --session "fix login bug"

После запуска команда создаёт виртуальную машину, клонирует репозиторий, решает задачу и отправляет pull request с готовым исправлением.

Что интересного:
- Командная строка и API для управления агентом
- Асинхронные задачи и параллельное выполнение
- Скрипты и автоматизация (через CI, cron, pipelines)
- Память и адаптация под ваш стиль кода
- Безопасное хранение ключей и токенов
- Интерактивный интерфейс в терминале (TUI) с отображением статуса задач в реальном времени

TUI-режим напоминает веб-панель, но работает прямо в консоли, позволяя быстро запускать, отслеживать и управлять сессиями.

Jules можно интегрировать с Slack или системами сборки - агент сам создаёт и выполняет задачи, пока вы занимаетесь другими делами.

Если агент сталкивается с проблемой, то приостанавливает работу и запрашивает помощь, а не «угадывает» решение.

Обе утилиты - Jules и Gemini CLI - работают на Gemini 2.5 Pro, но Jules ориентирован на короткие и точные задачи, а Gemini CLI - на длительную совместную работу.

Бесплатная версия позволяет запускать 15 задач в день (до 3 одновременно).

Платные тарифы - $19.99 и $124.99 - дают лимиты до 100 и 300 задач.

Google также планирует добавить поддержку GitLab, Bitbucket и локальных проектов без Git.

🟠Подробности: https://developers.googleblog.com/en/level-up-your-dev-game-the-jules-api-is-here/
🟠Доки: https://jules.google/docs

@ai_machinelearning_big_data


#Google #Jules #AI #CodingAgent #Gemini25Pro #Automation
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14728👍25🎉12👏7😁6🤩5🥰2🤣2🫡2🤔1