383K subscribers
4.44K photos
855 videos
17 files
4.88K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
💡 Релиз Z-Image: быстрая 6B модель

Команда Tongyi-MAI представила новую text-to-image архитектуру на 6 миллиардов параметров.

Главное из отчета:

* Оптимизация: Это дистиллированная модель, которой достаточно 8 шагов (NFE) для качественной генерации.
* Скорость: Sub-second latency (менее 1 секунды) на H800.
* Требования: Спокойно запускается на 16GB VRAM. Модель доступна для локального инференса на старших картах 3090/4080/4090.

Моделька выделит высокий уровень фотореализма, точное следование инструкциям и рендеринг текста.


🔗 Демо: https://modelscope.cn/aigc/imageGeneration
🔗 Веса (Turbo): https://modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo

@ai_machinelearning_big_data


#Tongyi #ai #genai #ml
39👍20🦄4🥰3🔥2😁2
📌This Is How We Are Going to Build AGI: CAIA Google рассказал о состоянии ИИ.

Логан Килпатрик из команды DeepMind беседует с Кораем Кавукчуоглу, CTO DeepMind и по совместительству новым главным архитектором Google по искусственному интеллекту.

Корай Кавукчуоглу рассказал о своих взглядах на текущее состояние ИИ, архитектуру Gemini и стратегию Google по достижению AGI. Он считает, что это «новая эра», где технологии стремительно меняются, и что ближайшие 6 месяцев обещают быть такими же захватывающими, как и предыдущие.

Основные темы интервью:

🟡Успех Gemini 3 и подход к AGI

Недавний запуск Gemini 3 получился суперпозитивным. Но прогресс не замедляется, и Gemini 3, подобно 2.5, снова «отодвинула рубеж по ряду измерений». Центральная философия Google в том, что AGI будет «совместно создаваться с нашими клиентами». Это не чисто исследовательская работа, проводимая в изоляции, а совместное усилие с миром, требующее инженерного мышления.

🟡Новый взгляд на прогресс и бенчмарки

Несмотря на то, что модели Google достигают лидирующих позиций на бенчмарках, истинное мерило прогресса в реальном применении. Старые бенчмарки перестают определять текущий рубеж, и новая мера успеха — это предоставление большей ценности в реальном мире, где модели используют ученые, студенты, юристы и инженеры.

🟡Планы на будущее

Приоритеты для улучшения в будущих версиях Gemini Pro:

🟢Следование инструкциям: Модель должна уметь понимать и выполнять запрос пользователя, а не просто отвечать так, как считает нужным.

🟢Интернационализация: Google сосредоточен на языках, где исторически производительность была невысокой.

🟢Функциональные и инструментальные вызовы: Это критически важные технические области, поскольку они позволяют моделям естественно использовать существующие инструменты.

🟢Код и агентские действия : Код - это база для создания чего угодно в цифровом мире. Корай считает, что агентские действия и код — это наиболее перспективные области роста, в которых еще есть много возможностей для совершенствования.

🟡Интеграция с продуктами и инновации

Интеграция- важная тема для сбора фидбэка от пользователей, который необходим для понимания того, как нужно улучшать модели. Риск для Gemini заключается не в отсутствии масштабирования, а в исчерпании инноваций. Поэтому Google DeepMind и Google Research должны постоянно заниматься исследованиями, чтобы находить новые идеи, которые будут питать «двигатель ИИ» Google.

🟡Единство моделей и генеративные медиа

Генеративные медиа-модели сходятся с текстовыми моделями. Яркий пример - Nano Banana Pro, которая показала, как слияние понимания мира из текста с пониманием из изображений позволяет модели создавать более детализированные и концептуально связные изображения, например, инфографику на основе сложных документов.

Фоном идет история о личном пути Корая Кавукчуоглу : от исследователя Deep Learning в DeepMind в 2012 году до текущей руководящей роли.

🔜 Смотреть полное интервью на Youtube


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
102👍30🔥18🥰5❤‍🔥2😁1🤩1😇1🦄1
Media is too big
VIEW IN TELEGRAM
✔️ Метаданные пользователей OpenAI API утекли через сервис Mixpanel.

OpenAI раскрыла детали инцидента безопасности, произошедшего на стороне подрядчика — платформы аналитики Mixpanel. Злоумышленники получили доступ к системам вендора и экспортировали метаданные пользователей, работающих с API. В утечку попали имена, адреса электронной почты, User ID, ID организаций, сведения об используемых браузерах и ОС, а также примерная геолокация.

OpenAI говорит, что критически важные данные остались в безопасности: пароли, сами API-ключи, платежная информация и промпты не скомпрометированы. Пользователей ChatGPT инцидент также не затронул. В ответ на нарушение периметра безопасности OpenAI отключила Mixpanel от своих продуктов и полностью прекратила сотрудничество.
openai.com

✔️ Китайский бигтех переносит обучение ИИ за границу.

Alibaba и ByteDance начали массово переводить обучение LLM в Юго-Восточную Азию. Цель миграции в Сингапур и Малайзию — получить легальный доступ к ускорителям Nvidia, прямые поставки которых в КНР заблокированы. Арена мощностей у зарубежных ЦОД формально не нарушает санкционный режим. Этот обходной путь стал безопасным после того, как администрация США отменила «правило распространения».

Исключением остается DeepSeek, который продолжает тренировать модели внутри Китая, используя запасы карт Nvidia и сотрудничая с инженерами Huawei. В индустрии формируется гибридная архитектура: обучение выносится на зарубежные кластеры, а инференс все чаще переводится на локальные китайские чипы.
ft.com

✔️ Alibaba представила умные очки Quark.

Китайский техногигант запустил продажи смарт-очков Quark. Устройство, внешне неотличимое от стандартной оправы, работает под управлением модели Qwen. Стартовая цена гаджета составляет около $268.

Инженеры сделали ставку на автономность и интеграцию с экосистемой: девайс оснащен сменными аккумуляторами, двойной оптикой и системой профессиональной съемки. Очки глубоко связаны с сервисами компании — пользователи могут использовать визуальный ассистент для мгновенного перевода, оплаты через Alipay и распознавания товаров для поиска цен на Taobao.
reuters.com

✔️ Apple создает альтернативу диффузионным нейросетям.

Apple опубликовала работу, предлагающую новый подход к генерации видео, способный потеснить диффузионные модели. Система STARFlow-V построена на архитектуре потоковой нормализации и обучается как единая модель для работы с текстом, картинками и видео.

В отличие от диффузии, требующей множества итераций для денойза, STARFlow-V использует однократное обратимое отображение и строгую причинно-следственную логику. Глобальный блок модели работает авторегрессионно: генерация каждого нового латента зависит исключительно от предыдущих данных.

Для оптимизации скорости вычислений применяется параллельные обновления Якоби, что дает качество уровня SOTA при более высокой стабильности генерации.
starflow-v.github.io

✔️ AdvancedIF: жёсткий бенчмарк проверки LLM на следование сложным инструкциям.

Лаборатория Марка Цукерберга разработала AdvancedIF - инструмент для выявления реальных пределов LLM в выполнении директив. Бенчмарк фокусируется на сценариях с высокой когнитивной нагрузкой: набор данных включает более 1600 промптов, каждый из которых содержит 6 одновременных условий: от требований к формату и стилю до негативных ограничений и перекрестных логических зависимостей.

Помимо разовых запросов, AdvancedIF тестирует управляемость моделей через системные промпты и способность удерживать контекст в сложных диалогах. В качестве арбитра используется o3-mini, которая сверяет ответы модели с критериями, разработанными экспертами-людьми. Инструментарий поддерживает пакетную обработку, а сам датасет можно найти на Hugging Face.
github.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
72👍19🔥8🦄3
🌟 ToolOrchestra: буст ИИ-потенциала за счет координации моделей и инструментов.

NVIDIA совместно с Университетом Гонконга разработала ToolOrchestra - методику обучения дирижеров для ИИ-агентов, и выпустила на ее основе модель Orchestrator-8B.

Это модель, базирующаяся на архитектуре Qwen3 предназначена для оркестрации других моделей и инструментов. Вместо того чтобы решать задачу в одиночку, модель чередует этапы рассуждения с вызовом внешних инструментов.

В ее арсенале поисковые движки, интерпретаторы кода и другие LLM, от узкоспециализированных математических до универсальных гигантов Claude и Llama-Nemotron.

Обучение проводилось с помощью GRPO, который поощрял модель не только за точность, но и за экономическую эффективность.

В результате решение получилось в 2,5 раза быстрее и на 70% дешевле в эксплуатации, чем использование одной лишь флагманской модели для всех этапов задачи, а сама Orchestrator-8B набрала 37,1% в сложнейшем бенчмарке Humanity's Last Exam , обойдя GPT-5 (35,1%).


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование модели: NVIDIA License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Orchestrator #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
66👍34🔥11🦄3🤬2❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ ШАД Яндекса начал обучать ученых.

В Школе анализа данных, где готовят специалистов по ИИ, началось обучение по применению ИИ в естественно-научных исследованиях. На программу подали заявки ученые из 37 регионов - больше всего запросов получили от экспертов в областях физики, медицины и химии. В итоге зачислили 50 молодых исследователей: от магистрантов до кандидатов наук из Москвы, Петербурга, Уфы, Иркутска, Владивостока и Екатеринбурга.

Участники изучают основы ИИ и сразу применяют инструменты в своих задачах. С каждой командой работает эксперт ШАДа: помогает выбрать методы и спланировать эксперимент. Если проекту нужны тяжелые вычисления, подключаются мощности Yandex Cloud.

✔️ ИИ научили считывать активность скрытых мышц кисти по видео.

Команда из Institute of Science Tokyo анонсировала фреймворк PianoKPM Net, способный с высокой точностью определять активность мышц рук без использования нательных датчиков. Обычно для этого требуется инвазивная и дорогая электромиография, но новая архитектура реконструирует паттерны мышечных сокращений, анализируя только видеозапись.

В основе системы - уникальный датасет, собранный на базе 12 часов игры профессиональных пианистов, где визуальные данные синхронизированы с реальными сигналами мышц. Технология превращает обычную камеру в диагностический инструмент, что важно для реабилитационной медицины, спортивной аналитики и создания продвинутых интерфейсов «человек-компьютер». Авторы планируют выложить датасет и модель в открытый доступ.
techxplore.com

✔️ ИИ-проект Джеффа Безоса купил стартап General Agents.

Project Prometheus поглотил разработчика агентного ИИ General Agents. Сделка прошла в закрытом режиме еще летом и сопровождалась переходом команды инженеров из DeepMind и Tesla в структуру Prometheus. Цель Prometheus: создание ИИ-систем для поддержки сложных производств автомобилестроения и космической отрасли.

Главный актив General Agents - технология Ace для автономного управления интерфейсами и приложениями. Хотя изначально Ace создавался для автоматизации рутинны на ПК, в рамках Prometheus эти наработки, судя по всему, будут масштабированы для индустриальных сценариев.
wired.com

✔️ OpenAI и Google резко ограничили лимиты в Sora и Nano Banana Pro.

Глава направления Sora в OpenAI Билл Пиблз сообщил, что бесплатные аккаунты теперь ограничены всего 6 видеогенерациями в сутки, так как текущие графические процессоры буквально плавятся от запросов. Это ограничение не выглядит временным: компания прямо предлагает докупать генерации по мере необходимости, хотя условия для подписчиков ChatGPT Plus и Pro пока остались прежними.

Google приняла аналогичные меры, урезав бесплатный доступ к инструменту Nano Banana Pro до 2 изображений в день. Техгигант предупредил, что лимиты могут меняться динамически и без уведомлений. Кроме того, под ограничения попал и доступ бесплатных пользователей к модели Gemini 3 Pro.
theverge.com

✔️ Perplexity добавила функцию долгосрочной памяти.

ИИ-поисковик получил функцию "persistent memory", которая позволяет запоминать предпочтения, интересы и детали предыдущих диалогов. Теперь система автоматически создает "постоянный контекст" пользователя, а ответы становятся персонализированными и требуют меньше уточняющих запросов.

Perplexity извлекает факты из хранилища памяти и напрямую использует их при формировании ответа. Этот контекстный слой работает поверх любой выбранной модели без потери накопленных знаний о пользователе. Функция полностью управляема: сбор данных можно отключить в настройках, а в режиме инкогнито история не сохраняется.
perplexity.ai

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
59👍26🔥8😁4🦄4
⚡️ В Ai Toolkit появилась поддержка обучения LoRA для Z-Image Turbo.

Ostris, разработчик популярного пакета для обучения диффузионных моделей добавил поддержку обучения для Z-Image Turbo с помощью De-Distill адаптера.

AI Toolkit — это универсальный набор инструментов для обучения диффузионных моделей на потребительском оборудовании. Он может запускаться как в GUI, так и в командной строке. Набор разработан так, чтобы быть простым в использовании, но при этом обладать всеми возможными функциями.


По первым тестам, обучение возможно на 12+ VRAM, а обучение персонажа на 17 изображениях длительностью 3000 шагов на RTX 5090 занимает примерно полтора часа.

Подробный гайд по процессу автор тулкита обещает выпустить в ближайшие дни.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
140🔥15🥰5🦄3👍2
🌟 MedSAM-3: адаптация SAM 3 для медицины.

MedSAM-3 - исследовательский проект, который переносит возможности сегментации по текстовым запросам из общего домена в медицинский.

Несмотря на мощь оригинальной SAM 3, тесты показали ее слабую применимость к клиническим данным: базовая модель часто путает анатомические структуры и не понимает специфические термины.

MedSAM-3 решает эту проблему, позволяя врачам выделять объекты на снимках МРТ, КТ, УЗИ и гистопатологии с помощью естественного языка. Например, по запросу «сегментируй опухоль молочной железы».

В основе - дизайн SAM 3 с двойным трансформером. На обучении заморозили энкодеры изображений и текста, чтобы сохранить сильные визуальные приоритеты оригинала, а вот компоненты детектора прошли SFT на медицинских датасетах. Это позволило сохранить мощный базис оригинальной SAM 3, но добавить ей понимание медицинской специфики.

В посттрейн-тестах наилучшую производительность показала конфигурация MedSAM-3 T+I, где текстовые подсказки были объединены с ограничивающими рамками. Такой подход позволил тестовой модели обойти классический U-Net и первую версию MedSAM на бенчмарках BUSI (Dice score - 0.7772) и Kvasir-SEG.

🟡Помимо самой модели, разработчики собрали агентный фреймворк MedSAM-3 Agent.

Он использует мультимодальную LLM (в экспериментах - Gemini 3 Pro) в качестве планировщика, который анализирует запрос, выстраивает цепочку рассуждений и итеративно управляет процессом сегментации.

В эксперименте c Gemini 3 Pro, на том же тестовом наборе BUSI, метрика Dice выросла с 0.7772 до 0.8064.

⚠️ Проект пока на стадии техотчета, но разработчики обещают опубликовать код и веса модели в ближайшее время. Так что тем, кто занимается ИИ в медицине - рекомендуем следить за репозиторием на Github.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #Segmentation #MedSAM3
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥54👍2016💋5🥰3🦄3🤔2🗿1
⚡️ KlingAI запустит новую омни-модель на этой неделе.

Kling AI — это сервис для генерации видео китайской компании Kuaishou (Kwai). Наибольшую известность он получил как аналог OpenAI Sora, способный создавать по текстовому описанию видеоролики с поддержкой консистентности персонажей и продвинутыми инструментами.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥21🥰42👏2🦄1
Media is too big
VIEW IN TELEGRAM
✔️ Дженсен Хуанг потребовал тотальной автоматизации внутри Nvidia.

CEO Nvidia обратился к сотрудникам с директивой использовать ИИ-инструменты для решения абсолютно любой задачи, где это технически возможно. Хуанг считает, что компания должна не только давать миру железо для вычислений, но и сама служить эталоном ИИ-эффективности.

Особое внимание он уделил инструментам разработки, настаивая на их тотальном внедрении в инженерные процессы. Несмотря на автоматизацию, компания продолжает расти. За год штат Nvidia увеличился с 29,6 до 36 тысяч человек, и для покрытия текущих задач требуется нанять еще около 10 тысяч специалистов.

NVIDIA не первая, кто требует от сотрудников использования ИИ - Google и Microsoft также начали привязывать использование нейросетей к KPI сотрудников.
techspot.com

✔️ В тестовой версии ChatGPT для Android нашли признаки рекламы.

Разработчик Тибор Блахо обнаружил в тестовой версии ChatGPT для Android отсылки на рекламный функционал. Строки содержат формулировки: «рекламная функция», «поисковая реклама» и «карусель поисковой рекламы», что указывает на то, что OpenAI, возможно, разрабатывает функцию показа рекламы в ChatGPT.
Tibor Blaho в сети X

✔️ Pinokio обновился до версии 5.0.

Мажорное обновление платформы Pinokio, позиционирует пятую версию как «Vercel для localhost». Инструмент позволяет разворачивать на macOS, Windows и Linux любые веб-серверы, CLI-приложения и ИИ-модели в один клик. Система полностью автоматизирует рутину по настройке окружения, самостоятельно подтягивая необходимые пакетные менеджеры.

Pinokio может создавать лаунчеры для любых проектов с помощью ИИ-агентов. Интерфейс стал универсальным, добавлена поддержка интерактивных терминалов и режим Cells для параллельной работы с фронтендом, бэкендом и логами в одном окне. В новой версии появился «локальный интернет»: Pinokio присваивает запущенным приложениям короткие HTTPS-домены и делает их доступными для других устройств в сети, автоматически активируя сервисы при входящем запросе.
Автор Pinokio в сети X

✔️ Пятая часть научных рецензий на ICLR были полностью написаны ИИ.

Организаторы конференции ICLR опубликовали результаты проверки контента, проведенной совместно с Pangram Labs. Анализ массива из 75 800 отзывов показал, что почти 16 тыс. рецензий (около 21%) были полностью сгенерированы ИИ, а не написаны людьми. Проблема затронула и сами научные статьи: 199 поданных рукописей были распознаны как полностью написанные ИИ, а еще в 9% работ доля сгенерированного текста превысила 50%.

Хотя регламент ICLR допускает использование ИИ-инструментов для правки текста или генерации кода при условии явного указания, создание синтетических рецензий подрывает доверие к процессу ревью. В ответ на инцидент организаторы вводят обязательный автоматизированный скрининг всех материалов на использование ИИ.
nature.com

✔️ Slop Evader: расширение, которое очищает поиск от ИИ-контента.

Проект позиционируется как попытка вернуть пользователям достоверный интернет эпохи до ChatGPT. Расширение использует Google Search API для жесткой фильтрации выдачи, отсекая любые материалы, опубликованные после 30 ноября 2022 года. Автор называет этот подход тактикой «выжженной земли»: по ее мнению, это единственный надежный способ гарантировать, что контент создан человеком, в условиях тотального ИИ-слопа.

Slop Evader работает с YouTube, Reddit, Stack Exchange и архивами других крупных платформ. Очевидный технический недостаток полной потери доступа к актуальным новостям является осознанной частью концепции. Создатель расширения надеется, что растущий запрос пользователей на «человеческий» контент в итоге вынудит поисковые системы внедрить маркировку генеративных материалов.
404media.co


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2926🔥10🦄2
⚡️Ozon Profit расширяет сбор и разметку данных для ML по всей России

Краудсорсинговая платформа Ozon Profit, которая изначально фокусировалась на онлайн-задачах, теперь позволяет собирать данные и проводить проверки в офлайне по всей России. Это полезно для проектов, чьи ML-модели требуют физической верификации.

Компании могут отправлять исполнителей для фотофиксации витрин, проверки цен и качества сервиса в любом городе. Параллельно за год в 5 раз вырос объем чисто онлайн-проектов по разметке изображений, текстов и видео, а также анализу тональности обращений — критически важных задач для обучения моделей.

Сейчас в офлайне исполнители выезжают на точку для сбора данных, а в онлайне занимаются разметкой данных, анализом эмоций в комментариях, модерацией. Сегодня на платформе зарегистрировано более 100 000 исполнителей.

@ai_machinelearning_big_data

#news #ml
👍2813🥱12🥰3🤣3🌚2😢1🍓1🦄1