Complex Systems Studies
2.43K subscribers
1.55K photos
125 videos
116 files
4.54K links
What's up in Complexity Science?!
Check out here:

@ComplexSys

#complexity #complex_systems #networks #network_science

📨 Contact us: @carimi
Download Telegram
🌀 Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation

Science, 2010

🔗 http://science.sciencemag.org/content/329/5999/1616?sid=9d6f83eb-8fff-498a-ac84-5010a39f4502

📌 Abstract
The Turing, or reaction-diffusion (RD), model is one of the best-known theoretical models used to explain self-regulated pattern formation in the developing animal embryo. Although its real-world relevance was long debated, a number of compelling examples have gradually alleviated much of the skepticism surrounding the model. The RD model can generate a wide variety of spatial patterns, and mathematical studies have revealed the kinds of interactions required for each, giving this model the potential for application as an experimental working hypothesis in a wide variety of morphological phenomena. In this review, we describe the essence of this theory for experimental biologists unfamiliar with the model, using examples from experimental studies in which the RD model is effectively incorporated.
🌀 A mathematical theory proposed by Alan Turing in 1952 can explain the formation of fingers

https://phys.org/news/2014-07-mathematical-theory-alan-turing-formation.html
🌀 Alan Turing’s Patterns in Nature, and Beyond

https://www.wired.com/2011/02/turing-patterns/
🎯 «فیزیک‌طوری 🔭» یک گروه دانشگاهی با اعضای حرفه‌ای، باحال، با حوصله و کنجکاوه که علم رو به صورت «#حرفه‌ای» دنبال می‌کنند.

🚩 هدف این گروه خلاق‌بودن در #تولید محتوای علمی هست، نه #کپی کردن پی‌درپی از گروه‌ها یا کانال‌های دیگه! هر چیز مرتبط با فیزیک که #منبع موثقی داشته باشه می‌تونه به این گروه فرستاده بشه، به شرطی که تحت عنوان «#شبه‌علم» طبقه‌بندی نشه!

لطفا از ارسال هر گونه مطلبی که به عنوان تبلیغ بهش نگاه میشه کرد خود‌داری کنید. همین‌طور از کانال‌های دیگه بیشتر از ۳ مطلب متوالی ارسال نکنید. هدف ما جمع‌آوری مطالب از بقیه گروه‌ها یا کانال‌ها نیست، بلکه تولید محتوای جدید و بدون تکراره.

1️⃣ لینک گروه:
"Eat, Sleep, Physics"
https://xn--r1a.website/joinchat/AAAAAD0S6fe7Qyt57FYi1Q

لطفا این لینک رو‌ برای هر کس که می‌فرستید، قبلش از شرایط و سیاست‌های گروه آگاهش کنید. ما دوست‌داریم کسایی که حضور و فعالیتشون به گروه کمک می‌کنه در گروه حضور پیدا کنند.

2️⃣ راستی، ترجیح ما اینه که بحثی در گروه نداشته باشیم. در صورت نیاز و علاقه، مباحث بحث‌برانگیز رو می‌تونید به گروه «بحث فیزیک‌طوری 🎓» منتقل کنید:
https://telegram.me/joinchat/A0ATzD5lub60apbedf_1vA
🔺قابل توجه کنکوریان عزیز:

اسم گرایش «سیستم‌های پیچیده» برای رشته فیزیک دانشگاه شهید بهشتی، در دفترچه انتخاب رشته سازمان سنجش وجود ندارد و متأسفانه به اسم «فیزیک» با ظرفیت ۶ نفر آمده.
🗞 Forecasting in the light of Big Data

Hykel Hosni, Angelo Vulpiani

🔗 https://arxiv.org/pdf/1705.11186

📌 ABSTRACT
Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a #conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann
Fellow Ramin Golestanian Awarded Pierre-Gilles de Gennes Lecture Prize | St Cross College

رامین گلستانیان فیزیکدان ایرانی برنده جایزه معتبر پیر ژیل دو ژن Pierre-Gilles de Gennesاز ژورنال European Physical Journal E در زمینه ماده چگال نرم و بیوفیزیک شد. گلستانیان به خاطر پژوهش های گسترده اش در زمینه میکرو شناگرها و اندرکنش های هیدرودینامیکی آن ها که باعث کشف های هیجان انگیز در زمینه ماده های فعال شده، این جایزه را نصیب خود نموده است.

http://www.stx.ox.ac.uk/about-st-cross/news/fellow-ramin-golestanian-awarded-pierre-gilles-de-gennes-lecture-prize
Forwarded from Deleted AccountSCAM
Media is too big
VIEW IN TELEGRAM
In conversation with Geoffrey West
🌀 A Nature Communications collection highlighting their papers in complexity research:

🔗 https://www.nature.com/collections/ycjylwzvmz
🗞 The scaling structure of the global road network

Emanuele Strano, Andrea Giometto, Saray Shai, Enrico Bertuzzo, Peter J. Mucha, Andrea Rinaldo

🔗 https://arxiv.org/pdf/1706.01401

📌 ABSTRACT
Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand/circulation and land-use, the next century will witness a major increase in the extent of paved roads built worldwide. It is crucial then to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. Our findings bear implications on global road infrastructure growth based on land-use change and on planning policies sustaining urban expansions.
The scaling structure of the global road network

https://arxiv.org/pdf/1706.01401